Bùi Trường Sơn

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Bùi Trường Sơn
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)

Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).

YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log⁡2t1+log⁡2t2=5log2t1+log2t2=5

\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)

\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)

\(\Leftrightarrow m = 32\).

Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)

Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).

YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log⁡2t1+log⁡2t2=5log2t1+log2t2=5

\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)

\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)

\(\Leftrightarrow m = 32\).

Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)

Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).

YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log⁡2t1+log⁡2t2=5log2t1+log2t2=5

\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)

\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)

\(\Leftrightarrow m = 32\).