

Nguyễn Chí Hải
Giới thiệu về bản thân



































5x(4x2−2x+1)−2x(10x2−5x+2)=−36
\(5 x . 4 x^{2} + 5 x . \left(\right. - 2 x \left.\right) + 5 x . 1 + \left(\right. - 2 x \left.\right) . 10 x^{2} + \left(\right. - 2 x \left.\right) . \left(\right. - 5 x \left.\right) + \left(\right. - 2 x \left.\right) . 2 = - 36\)
\(20 x^{3} + \left(\right. - 10 x^{2} \left.\right) + 5 x + \left(\right. - 20 x^{3} \left.\right) + 10 x^{2} + \left(\right. - 4 x \left.\right) = - 36\)
\(\left(\right. 20 x^{3} - 20 x^{3} \left.\right) + \left(\right. - 10 x^{2} + 10 x^{2} \left.\right) + \left(\right. 5 x - 4 x \left.\right) = - 36\)
\(x = - 36\)
Vậy \(x = - 36\).
− | \(2 x^{4}\) | \(- 3 x^{3}\) | \(- 3 x^{2}\) | \(+ 6 x\) | \(- 2\)
|
\(x^{2} - 2\) |
\(2 x^{4}\) |
| \(- 4 x^{2}\) |
|
|
\(2 x^{2} - 3 x + 1\) | |
| \(-\) | \(- 3 x^{3}\) | \(+ x^{2}\) | \(+ 6 x\) | \(- 2\) |
|
| \(- 3 x^{3}\) |
| \(+ 6 x\) |
|
| |
|
| \(-\) | \(x^{2}\) |
| \(- 2\) |
|
|
| \(x^{2}\) |
| \(- 2\) |
| |
|
|
|
|
| \(0\) |
a) Thể tích của hình hộp chữ nhật đã cho là:
\(V = x \left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right) = x^{3} - x\)
b) Tại \(x = 4\), thể tích của hình hộp chữ nhật là:
\(V = 4^{3} - 4 = 60\) (đơn vị thể tích)
a) P(x)+Q(x)=(x4-5x3+4x-5)+(-x4+3x2+2x+1)
P(x)+Q(x)= x4-5x3+4x-5 + -x4+3x2+2x+1
P(x)+Q(x)= (x4 -x4)-5x3+(4x+2x)-5+3x2+1
P(x)+Q(x)= -5x3+ 6x -5+3x2+1
b) R(x)=(x4-5x3+4x-5)-(-x4+3x2+2x+1)
R(x)= x4-5x3+4x-5 + x4-3x2 -2x -1
R(x)=(x4 + x4)-5x3+(4x-2x)-5-3x2+1
R(x)= 2x4 -5x3+ 2x -5-3x2+1