

lâm ngô
Giới thiệu về bản thân
Chào mừng bạn đến với trang cá nhân của lâm ngô





0





0





0





0





0





0





0
2025-07-12 09:23:42
Từ \(A B = B C\) ⇒ Tam giác \(A B C\) cân tại \(B\)
Từ \(C D = D A\) ⇒ Tam giác \(C D A\) cân tại \(D\)
Gọi \(B D\) cắt \(A C\) tại \(O\)
Cần chứng minh:
- \(O\) là trung điểm của \(A C\)
- \(B D \bot A C\)
- Xét hai tam giác \(A B C\) và \(C D A\):
- Từ \(A B = B C\) ⇒ \(\angle B A C = \angle B C A\)
- Từ \(C D = D A\) ⇒ \(\angle D C A = \angle D A C\)
Nếu 2 tam giác \(A B C\) và \(C D A\) xếp đối xứng nhau qua đường chéo \(B D\), thì các cặp đỉnh tương ứng đối xứng qua \(B D\), nghĩa là:
- \(A\) và \(C\) đối xứng nhau qua \(B D\)
- Do đó, \(B D\) là trung trực của đoạn \(A C\)
- Tổng 4 góc trong tứ giác:
\(\angle A + \angle B + \angle C + \angle D = 360^{\circ} \Rightarrow \angle A + \angle C = 360^{\circ} - \left(\right. 100^{\circ} + 80^{\circ} \left.\right) = 180^{\circ}\)
Mặt khác:
- Tam giác \(A B C\) cân tại \(B\) ⇒ \(\angle A = \angle C\)
- Hoặc tam giác \(C D A\) cân tại \(D\) ⇒ \(\angle A = \angle C\)
⇒ \(\angle A = \angle C\)
⇒ \(\angle A + \angle C = 180^{\circ} \Rightarrow 2 \angle A = 180^{\circ} \Rightarrow \angle A = \angle C = \boxed{90^{\circ}}\)
2024-10-18 21:51:06