Nguyễn Ngọc Mai

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Ngọc Mai
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Cho tứ giác nội tiếp $ABCD$ có tam giác $ABC$ là tam giác nhọn.Vì \(A M , C N\) là các đường cao của \(\Delta A B C\) nên \(A M ⊥ B C\) và \(C N ⊥ A B\)

Suy ra \(\hat{B M H} = \hat{B N H} = 9 0^{\circ}\).

Gọi \(F\) là trung điểm của \(H B\).

Xét tam giác \(H N B\) có \(\hat{H N B} = 9 0^{\circ}\) và \(N F\) là đường trung tuyến ứng với cạnh huyền nên \(F N = F H = F B = \frac{1}{2} B H\) (1)

Xét tam giác \(H M B\) có \(\hat{H M B} = 9 0^{\circ}\) và \(M F\) là đường trung tuyến ứng với cạnh huyền nên \(F M = F H = F B = \frac{1}{2} B H\) (2)

Suy ra \(B N H M\) là tứ giác nội tiếp đường tròn tâm \(F\), đường kính \(H B\).

Do đó \(\hat{M B N} + \hat{N H M} = 18 0^{\circ}\) (tổng hai góc đối bằng \(18 0^{\circ}\).

hay \(\hat{C B A} + \hat{N H M} = 18 0^{\circ}\).

Mà \(\hat{M B N} + \hat{N H M} = 18 0^{\circ}\) (hai góc kề bù) do đó \(\hat{C B A} = \hat{M B N}\).

b) Chứng minh \(\hat{A D C} = \hat{A H C}\).

Tứ giác \(B N H M\) nội tiếp nên \(\hat{M B N} + \hat{N H M} = 18 0^{\circ}\)

Mà \(\hat{A H C} = \hat{N H M}\) (đối đỉnh) nên \(\hat{M B N} + \hat{A H C} = 18 0^{\circ}\) hay \(\hat{A B C} + \hat{A H C} = 18 0^{\circ}\)

Mặt khác tứ giác \(B N H M\) nội tiếp đường tròn tâm \(\left(\right. O \left.\right)\) nên \(\hat{A D C} + \hat{A B C} = 18 0^{\circ}\).

Do đó \(\hat{A D C} = \hat{A H C}\).

c) Chứng minh \(\hat{M A C} = \hat{M N C}\).

Ta chứng minh \(A C M N\) là tứ giác nội tiếp.

Gọi \(E\) là trung điểm \(A C\).

Xét tam giác \(A M C\) có \(\hat{A M C} = 9 0^{\circ}\) và \(M E\) là đường trung tuyến nên \(E M = E C = E A = \frac{1}{2} A C\) (3) 

Xét tam giác \(A N C\) có \(\hat{A N C} = 9 0^{\circ}\) và \(N E\) là đường trung tuyến nên \(E N = E C = E A = \frac{1}{2} A C\) (4)

Từ (3) và (4) suy ra \(E M = E N = E C = E A\).

Vậy tứ giác \(A C M N\) nội tiếp được đường tròn có tâm \(E\) đường kính \(A C\).

Suy ra \(\hat{M A C} = \hat{M N C}\) (hai góc nội tiếp cùng chắn cung \(M C\) của đường tròn tâm \(E\)).

d) Chứng minh \(\hat{M A C} + 9 0^{\circ} = \hat{A N M}\).

Ta có \(\hat{M A C} + \hat{A C M} = 9 0^{\circ}\) (hai góc phụ nhau)

Hay \(\hat{A C M} = 9 0^{\circ} - \hat{M A C}\)

Mà \(\hat{A C M} + \hat{A N M} = 18 0^{\circ}\) (tứ giác \(A C M N\) nội tiếp được đường tròn) nên \(9 0^{\circ} - \hat{M A C} + \hat{A N M} = 18 0^{\circ}\)

Suy ra \(\hat{M A C} + 9 0^{\circ} = \hat{A N M}\)

Cho tam giác nhọn $ABC$ có $AB>AC$. Đường tròn $(I)$ đường kính $BC$ cắt $AB, \, AC$ lần lượt tại $F, \, E$. Đường thẳng $BE$ cắt $CF$ tại $H$ và đường thẳng $AH$ cắt $BC$ tại $D$.Xét đường tròn \(\left(\right. I \left.\right)\) có \(\hat{C F B} = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn)

Suy ra \(C F ⊥ A B\).

\(\hat{C F B} = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn)

Suy ra \(B E ⊥ A C\)

Mà \(C F\) cắt \(B E\) tại \(H\) nên \(H\) là trực tâm của tam giác \(A B C\)

Hay \(A H ⊥ B C\), suy ra \(\hat{H D B} = 9 0^{\circ}\)

Gọi \(K\) là trung điểm \(B H\).

Xét tam giác \(H D B\) có \(\hat{H D B} = 9 0^{\circ}\) và \(D K\) là đường trung tuyến ứng với cạnh huyền nên \(K D = K H = K B = \frac{1}{2} B H\) (1)

Xét tam giác \(H F B\) có \(\hat{H F B} = 9 0^{\circ}\) và \(E K\) là đường trung tuyến ứng với cạnh huyền nên \(K E = K H = K B = \frac{1}{2} H B\) (2)

Từ (1) và (2) suy ra \(K B = K H = K F = K D\).

Vậy tứ giác \(B F H D\) nội tiếp được đường tròn có tâm \(K\) đường kính \(B H\).

b) Chứng minh tứ giác \(A B D E\) nội tiếp.

Gọi \(O\) là trung điểm \(A B\).

Xét tam giác \(A D B\) có \(\hat{A D B} = 9 0^{\circ}\) và \(D O\) là đường trung tuyến ứng với cạnh huyền nên \(O D = O A = O B = \frac{1}{2} A B\) (3)

Xét tam giác \(A E B\) có \(\hat{A E B} = 9 0^{\circ}\) và \(E O\) là đường trung tuyến ứng với cạnh huyền nên \(O E = O A = O B = \frac{1}{2} A B\) (4)

Từ (3) và (4) suy ra \(O D = O E = O A = O B\).

Vậy tứ giác \(A B D E\) nội tiếp được đường tròn có tâm \(O\) đường kính \(A B\).

Cho tam giác $ABC$ có ba góc nhọn. Vẽ các đường cao $BD$ và $CE$ của tam giác $ABC$. Gọi $H$ là giao điểm của $BD$ và $CE$Gọi \(O\) là trung điểm \(B C\).

a,

Vì \(B D , C E\) là các đường cao của \(\Delta A B C\) nên \(B D ⊥ A C\) và \(C E ⊥ A B\)

Suy ra \(\hat{B D C} = \hat{B E C} = 9 0^{\circ}\).

Xét tam giác \(B D C\) có \(\hat{B D C} = 9 0^{\circ}\) và \(D O\) là đường trung tuyến ứng với cạnh huyền nên \(O D = O C = O B = \frac{1}{2} B C\) (1)

Xét tam giác \(B E C\) có \(\hat{B E C} = 9 0^{\circ}\) và \(E O\) là đường trung tuyến ứng với cạnh huyền nên \(O E = O C = O B = \frac{1}{2} B C\) (2)

Từ (1) và (2) suy ra \(O D = O E = O C = O B\).

Vậy tứ giác \(B C D E\) nội tiếp được đường tròn có tâm \(O\) là trung điểm \(B C\).

b) Chứng minh \(A D H E\) là tứ giác nội tiếp.

Vì \(B D , C E\) là các đường cao của \(\Delta A B C\) nên \(B D ⊥ A C\) và \(C E ⊥ \&\text{nbsp}; A B\).

b,

Gọi \(M\) là trung điểm \(A H\) 

Xét tam giác \(A D H\) có \(\hat{A D H} = 9 0^{\circ}\) và \(D M\) là đường trung tuyến ứng với cạnh huyền nên \(M D = M A = M H = \frac{1}{2} A H\) (3)

Xét tam giác \(A E H\) có \(\hat{A E H} = 9 0^{\circ}\) và \(E M\) là đường trung tuyến ứng với cạnh huyền nên \(M E = M A = M H = \frac{1}{2} A H\) (4)

Từ (3) và (4) suy ra \(A D H E\) là tứ giác nội tiếp đường tròn tâm \(M\) là trung điểm \(A H\), đường kính \(A H\).

Gọi cạnh đáy, chiều cao của hình vuông lần lượt là: \(x\) (dm); \(h\) (dm), \(\left(\right. x ; y > 0 \left.\right)\)

Ta có thể tích của hình hộp chữ nhật là: \(V = x^{2} . h = 8\)

Suy ra \(h = \frac{8}{x^{2}}\)

a) Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\)

Suy ra \(\hat{O M K} = \hat{O B K} = 9 0^{\circ}\) (tính chất tiếp tuyến)

Suy ra \(\Delta M K O\) vuông tại \(M\)\(\Delta O B K\) vuông tại \(B\).

Dựng đường trung tuyến \(M I\)\(B I\) lần lượt trong \(\Delta M K O , \Delta O B K\) với \(I\) là trung điểm của \(O K\).

Suy ra \(I M = I O = I K = I B = \frac{1}{2} O K\) (tính chất đường trung tuyến trong tam giác vuông)

Suy ra các điểm \(M\)\(O\)\(K\)\(B\) đều nằm trên đường tròn \(\left(\right. I \left.\right)\)

Vậy tứ giác \(M O B K\) là tứ giác nội tiếp.

b) Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\) cắt nhau tại \(K\).

Suy ra \(K M = K B\) (tính chất hai tiếp tuyến cắt nhau)

Mà \(K O\) là phân giác của \(\hat{M K B}\)

Suy ra \(K O\) đồng thời là đường cao trong \(\Delta M K B\).

Vậy \(O K \bot M B\)

c)Chứng minh \(\hat{E M K} = \hat{M F E}\)

Ta có \(O M = O E\) nên \(\Delta O M E\) cân tại \(O\).

Dựng đường cao \(O P\) của \(\Delta O M E\)

Suy ra \(\Delta O P M\) vuông tại \(P\)

Do đó \(\hat{P M O} + \hat{M O P} = 9 0^{\circ}\)

Mà \(\hat{P M O} + \hat{E M K} = 9 0^{\circ}\) (\(M K\) là tiếp tuyến của đường tròn \(\left(\right. O \left.\right)\))

Suy ra \(\hat{M O P} = \hat{E M K}\)

Mặt khác \(O P\) là đường cao đồng thời là đường phân giác trong \(\Delta O M E\)

Ta có: \(\hat{M O P} = \hat{E M K} = \frac{1}{2} \hat{M O E}\) (1)

Ta thấy \(\hat{M F E}\) và \(\hat{M O E}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung \(M E\).

Suy ra \(\hat{M F E} = \frac{1}{2} \hat{M O E}\) (2)

Từ (1) và (2) suy ra \(\hat{E M K} = \hat{M F E}\) 

*) Chứng minh \(\hat{O F E} = \hat{E H K}\)

Xét \(\Delta O M K\) và \(\Delta M H K\) có:

\(\hat{O M K} = \hat{M H K} = 9 0^{\circ}\)

\(\hat{M K O}\) chung

Suy ra \(\Delta O M K \sim \Delta M H K\) (g.g)

Suy ra \(\frac{O K}{M K} = \frac{M K}{H K}\) hay \(M K^{2} = O K . H K\) (1)

Xét \(\Delta M E K\) và \(\Delta F M K\) có:

\(\hat{E M K} = \hat{M F E}\) (cmt)

\(\hat{E K M}\) chung

Suy ra \(\Delta M E K \sim \Delta F M K\) (g.g)

Suy ra \(\frac{E K}{M K} = \frac{M K}{F K}\) hay \(M K^{2} = E K . F K\) (2)

Từ (1) và (2) suy ra \(O K . H K = E K . F K\) hay \(\frac{K F}{H K} = \frac{O K}{E K}\)

Xét \(\Delta O F K\) và \(\Delta E H K\) có:

\(\frac{K F}{H K} = \frac{O K}{E K}\) (cmt)

\(\hat{O K F}\) chung

Suy ra \(\Delta O F K \sim \Delta E H K\) (c.g.c)

Vậy \(\hat{O F E} = \hat{E H K}\) (hai góc tương ứng)

Mẫu 1:

Vì đáy bể là hình vuông có độ dài đường chéo là \(4\) m nên diện tích đáy bể là: \(S_{1} = 4.4 : 2 = 8\) m2

Thể tích của bể theo mẫu 1 là: \(V_{1} = S_{1} . h_{1} = 8.2 = 16\) m3

Mẫu 2:

Bán kính đáy bể hình trụ là: \(R = d : 2 = 4 : 2 = 2\) m

Thể tích của bể theo mẫu 2 là: \(V_{2} = \pi . R^{2} . h_{2} = \pi 2^{2} . 2 \approx 25 , 13\) m3

Vì \(V_{2} > V_{1}\) nên người đó nên chọn xây theo mẫu thiết kế số 2 để có được bể dự trữ nước là nhiều nhất.

Δ′=[−(m−3)]2−1.[−2(m−1)]=(m−3)2+2m−2

\(\Delta^{'} = m^{2} - 4 m + 7 = \left(\right. m - 2 \left.\right)^{2} + 3 > 0 , \forall m\)

Do đó phương trình đã cho luôn có hai nghiệm phân biệt \(x_{1} , x_{2}\)

Theo định lí Viète, ta có: \(x_{1} + x_{2} = \frac{- b}{a} = 2 \left(\right. m - 3 \left.\right) ; x_{1} . x_{2} = \frac{c}{a} = - 2 \left(\right. m - 1 \left.\right)\)

Ta có: \(T = x_{1}^{2} + x_{2}^{2} = \left(\right. x_{1} + x_{2} \left.\right)^{2} - 2 x_{1} x_{2}\)

\(T = \left[\right. - 2 \left(\right. m - 3 \left.\right) \left]\right.^{2} - 2 \left[\right. - 2 \left(\right. m - 1 \left.\right) \left]\right.\)

\(T = 4 m^{2} - 20 m + 32 = \left(\right. 2 m - 5 \left.\right)^{2} + 7 \geq 7\)

Suy ra giá trị nhỏ nhất của \(T\) bằng \(7\) khi \(m = \frac{5}{2}\)

Vậy \(\): Giá trị cần tìm là m=5/2

Gọi số tiền điện hộ gia đình bác An trả trong 7/2024 là \(x\) (nghìn đồng), \(\left(\right. 0 < x < 500 \left.\right)\).

Gọi số tiền tiền điện hộ gia đình bác Bình trả trong tháng 7 năm 2024 là \(y\) (nghìn đồng), \(\left(\right. 0 < y < 500 \left.\right)\).

Số tiền điện hộ gia đình bác An được giảm trong tháng 8 năm 2024 là: \(15 \% x\) (nghìn đồng)

Số tiền điện hộ gia đình bác Bình được giảm trong tháng 8 năm 2024 là: \(10 \% y\) (nghìn đồng)

Theo đề bài ta có hệ phương trình:\({x+y=500\left(1\right)0,15x+0,1y=65\left(\right.2\left.\right)}\)\(\)

Từ \(\left(\right. 1 \left.\right)\) suy ra \(y=500-x\)

Thay \(y=500-x\) vào \(\left(\right. 2 \left.\right)\) ta được \(0 , 15 x + 0 , 1 \left(\right. 500 - x \left.\right) = 65\)

\(0 , 05 x = 15\)

\(x = 300\) (TM).

Thay \(x = 300\) vào \(y=500-x\) ta được \(y = 200\) (TM)

Vậy số tiền điện hộ gia đình bác Bình trả trong tháng 7 là \(200\) nghìn đồng, gia đình bác An trả trong tháng 7 là \(300\) nghìn đồng.

Gọi số tiền điện hộ gia đình bác An trả trong 7/2024 là \(x\) (nghìn đồng), \(\left(\right. 0 < x < 500 \left.\right)\).

Gọi số tiền tiền điện hộ gia đình bác Bình trả trong tháng 7 năm 2024 là \(y\) (nghìn đồng), \(\left(\right. 0 < y < 500 \left.\right)\).

Số tiền điện hộ gia đình bác An được giảm trong tháng 8 năm 2024 là: \(15 \% x\) (nghìn đồng)

Số tiền điện hộ gia đình bác Bình được giảm trong tháng 8 năm 2024 là: \(10 \% y\) (nghìn đồng)

Theo đề bài ta có hệ phương trình:\({x+y=500\left(1\right)0,15x+0,1y=65\left(\right.2\left.\right)}\)\(\)

Từ \(\left(\right. 1 \left.\right)\) suy ra \(y=500-x\)

Thay \(y=500-x\) vào \(\left(\right. 2 \left.\right)\) ta được \(0 , 15 x + 0 , 1 \left(\right. 500 - x \left.\right) = 65\)

\(0 , 05 x = 15\)

\(x = 300\) (TM).

Thay \(x = 300\) vào \(y=500-x\) ta được \(y = 200\) (TM)

Vậy số tiền điện hộ gia đình bác Bình trả trong tháng 7 là \(200\) nghìn đồng, gia đình bác An trả trong tháng 7 là \(300\) nghìn đồng.

Gọi số xe theo dự định là \(x\) chiếc (\(x \in \mathbb{N}^{*}\))

Lượng hàng mỗi xe phải chở theo kế hoạch là: \(\frac{120}{x}\) (tấn)

Do lúc sắp khởi hành đội được bổ sung thêm \(5\) chiếc xe cùng loại nên suy ra: số xe thực tế chở là: \(x + 5\) (chiếc)

Lượng hàng mỗi xe phải chở theo thực tế là: \(\frac{120}{x + 5}\) (tấn)

Theo bài ra ta có phương trình:

\(\frac{120}{x}\) - \(\frac{120}{x + 5} = 2\)

Biến đổi đưa về phương trình: \(x^{2} + 5 x - 300 = 0\)

Giải phương trình được \(x_{1} = 15\)\(x_{2} = - 20\)

\(x = - 20\) (không thỏa mãn)

\(x = 15\) (thỏa mãn)

Vậy số xe ban đầu là \(15\) xe.