Lê Thị Thu Hoài

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Thị Thu Hoài
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có:

\(A = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + . . . + \frac{1}{49.50}\)

\(A = \left(\right. 1 + \frac{1}{3} + \frac{1}{5} + . . . + \frac{1}{49} \left.\right) - \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - 2 \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{25} \left.\right)\)

\(A = \frac{1}{26} + \frac{1}{27} + . . . + \frac{1}{49} + \frac{1}{50} < \frac{1}{26} + \frac{1}{26} + \frac{1}{26} + . . . + \frac{1}{26} = \frac{25}{26} < 1.\)

Ta có:

\(A = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + . . . + \frac{1}{49.50}\)

\(A = \left(\right. 1 + \frac{1}{3} + \frac{1}{5} + . . . + \frac{1}{49} \left.\right) - \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - 2 \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{25} \left.\right)\)

\(A = \frac{1}{26} + \frac{1}{27} + . . . + \frac{1}{49} + \frac{1}{50} < \frac{1}{26} + \frac{1}{26} + \frac{1}{26} + . . . + \frac{1}{26} = \frac{25}{26} < 1.\)

Ta có:

\(A = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + . . . + \frac{1}{49.50}\)

\(A = \left(\right. 1 + \frac{1}{3} + \frac{1}{5} + . . . + \frac{1}{49} \left.\right) - \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - 2 \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{25} \left.\right)\)

\(A = \frac{1}{26} + \frac{1}{27} + . . . + \frac{1}{49} + \frac{1}{50} < \frac{1}{26} + \frac{1}{26} + \frac{1}{26} + . . . + \frac{1}{26} = \frac{25}{26} < 1.\)

Ta có:

\(A = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + . . . + \frac{1}{49.50}\)

\(A = \left(\right. 1 + \frac{1}{3} + \frac{1}{5} + . . . + \frac{1}{49} \left.\right) - \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - 2 \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{25} \left.\right)\)

\(A = \frac{1}{26} + \frac{1}{27} + . . . + \frac{1}{49} + \frac{1}{50} < \frac{1}{26} + \frac{1}{26} + \frac{1}{26} + . . . + \frac{1}{26} = \frac{25}{26} < 1.\)

Ta có:

\(A = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + . . . + \frac{1}{49.50}\)

\(A = \left(\right. 1 + \frac{1}{3} + \frac{1}{5} + . . . + \frac{1}{49} \left.\right) - \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - 2 \left(\right. \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{50} \left.\right)\)

\(A = \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + . . . + \frac{1}{49} + \frac{1}{50} \left.\right) - \left(\right. 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{25} \left.\right)\)

\(A = \frac{1}{26} + \frac{1}{27} + . . . + \frac{1}{49} + \frac{1}{50} < \frac{1}{26} + \frac{1}{26} + \frac{1}{26} + . . . + \frac{1}{26} = \frac{25}{26} < 1.\)

Question 1: Yes, I do. / No, I don’t. 

 Question 2: It’s … / My favourite subject is … 

 Question 3:  I like the library because it has many interesting books.

 Question 4: There are … rooms in my house.  

Question 5: There is a bed and a desk. There are some pictures on the walls. 

 Question 6: He’s / She’s creative and friendly.

Bạn chưa trả lời câu hỏi này. Trả lời câu hỏi này

I have a sister. Her name is Van. She is ten years old. She has long black hair and big brown eyes. She is very kind and always helps me with my homework. I like her because she makes me laugh and plays games with me every day. She is my best friend in the family.

question 1 : there is a reatding room

question 2 : is in front of the playground

question 3 : Minh's  bike is in 

question 4 :  going to work by car

a,  8 = VIII; 15 = XV; 24 = XXIV.

b,  Các bội nhỏ hơn 10 của số 3 là: 0; 3; 6 và 9.

a, Diện tích mảnh vườn ABCD là:

 35.20 = 700 (m2)

 b, Quãng đường ông đức đi một vòng xung quanh vườn dài:

( 35 + 20).2 = 110 (m)

 c, Diện tích trồng hoa là:

 700 - 35.20 : 2 = 350 (m2)