Nguyễn Thị Hương Giang

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Thị Hương Giang
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Các tia chung gốc \(A\) là:

   \(A B\) (hay \(A y\)); \(A M\) (hay \(A C\)\(A z\)); \(A x\).

b) Các điểm thuộc tia \(A z\) mà không thuộc tia \(A y\) là:

   \(M\) và \(C\).

c) Tia \(A M\) và tia \(M A\) không chung gốc nên không phải hai tia đối nhau.

Số tiền \(15\) quyển vở trước khi giảm giá là:

\(15.7\) \(000 = 105\) \(000\) (đồng)

Số tiền \(15\) quyển vở sau khi giàm giá \(10 \%\) là:

\(105\) \(000.90 \% = 94\) \(500\) (đồng)

Vậy bạn An đem theo \(100\) \(000\) đồng nên đủ tiền mua \(15\) quyển vở.

a) \(1 - \frac{1}{2} + \frac{1}{3} = \frac{6 - 3 + 2}{6} = \frac{5}{6}\).

b) \(\frac{2}{5} + \frac{3}{5} : \frac{9}{10} = \frac{2}{5} + \frac{3}{5} \cdot \frac{10}{9} = \frac{2}{5} + \frac{2}{3} = \frac{16}{15}\).

c) \(\frac{7}{11} \cdot \frac{3}{4} + \frac{7}{11} \cdot \frac{1}{4} + \frac{4}{11} = \frac{7}{11} \left(\right. \frac{3}{4} + \frac{1}{4} \left.\right) + \frac{4}{11} = \frac{7}{11} + \frac{4}{11} = 1\).

d) \(\left(\right. \frac{3}{4} + 0 , 5 + 25 \% \left.\right) \cdot 2 \frac{2}{3} = \left(\right. \frac{3}{4} + \frac{1}{2} + \frac{1}{4} \left.\right) \cdot \frac{8}{3} = \frac{3}{2} \cdot \frac{8}{3} = 4\).

a) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) nên:

\(A C + C B = A B\)

Thay \(A C = 2 , 5\) cm; \(A B = 5\) cm, ta có:

\(2 , 5 + C B = 5\)

\(C B = 5 - 2 , 5\)

\(C B = 2 , 5\) (cm).

b) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) và \(A C = C B = 2 , 5\) cm.

Nên điểm \(C\) là trung điểm của đoạn thẳng \(A B\)

a) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) nên:

\(A C + C B = A B\)

Thay \(A C = 2 , 5\) cm; \(A B = 5\) cm, ta có:

\(2 , 5 + C B = 5\)

\(C B = 5 - 2 , 5\)

\(C B = 2 , 5\) (cm).

b) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) và \(A C = C B = 2 , 5\) cm.

Nên điểm \(C\) là trung điểm của đoạn thẳng \(A B\)

a) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) nên:

\(A C + C B = A B\)

Thay \(A C = 2 , 5\) cm; \(A B = 5\) cm, ta có:

\(2 , 5 + C B = 5\)

\(C B = 5 - 2 , 5\)

\(C B = 2 , 5\) (cm).

b) Vì điểm \(C\) nằm giữa điểm \(A\) và điểm \(B\) và \(A C = C B = 2 , 5\) cm.

Nên điểm \(C\) là trung điểm của đoạn thẳng \(A B\)