Hoàng Duy Nhất

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Hoàng Duy Nhất
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Phương trình:

\(4^{x} - 3 \cdot 2^{x + 2} + m = 0\)

Đặt \(t = 2^{x} > 0\), ta có phương trình:

\(t^{2} - 12 t + m = 0\) \(\)\(\)

Tổng hai nghiệm \(x_{1} + x_{2} = 5 \Rightarrow t_{1} t_{2} = 2^{5} = 32 \Rightarrow m = 32\)

Phương trình có 2 nghiệm phân biệt khi:

\(\Delta=144-4m>0\Rightarrow m<36\Rightarrow\boxed{m = 32}\overset{}{}\)

Ta có: \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)

Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).

YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log⁡2t1+log⁡2t2=5log2t1+log2t2=5


ta có :ΔSAB vuông tại \(A \Rightarrow S A ⊥ A B\).

\(\Delta S A D\) vuông tại \(A \Rightarrow S A ⊥ A D\).

==> \(S A ⊥ \left(\right. A B C D \left.\right)\).

Gọi \(I\) là giao điểm của \(B M\)\(A D\).

Dựng \(A H\) vuông góc với \(B M\) tại \(H\).

Dựng \(A K\) vuông góc với \(S H\) tại \(K\).

\(SA\bot\left(\right.ABCD\left.\right)\\\&BM\subset\left(\right.ABCD\left.\right)\left.\right.\Rightarrow SA\bot BM\)\(B M ⊥ A H\)

\(\Rightarrow B M ⊥ \left(\right. S A H \left.\right)\).

Ta có \(BM\bot\left(\right.SAH\left.\right)\\\&BM\subset\left(\right.SBM\left.\right)\left.\right.\Rightarrow\left(\right.SAH\left.\right)\bot\left(\right.SBM\left.\right)\)

Ta có \(\left(\right.SAH\left.\right)\bot\left(\right.SBM\left.\right)\\\&\left(\right.SAH\left.\right)\cap\left(\right.SBM\left.\right)=SH\\\&AK\subset\left(\right.SAH\left.\right),AK\bot SH\left.\right.\Rightarrow AK\bot\left(\right.SBM\left.\right)\)

\(\Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = A K\)

Xét \(\Delta I A B\)\(M D\) // \(A B \Rightarrow \frac{I D}{I A} = \frac{M D}{A B} = \frac{\frac{1}{2} C D}{A B} = \frac{1}{2}\)

\(\Rightarrow D\) là trung điểm của \(I A\) \(\Rightarrow I A = 2 A D = 2 a\).

\(\Delta A B I\) vuông tại \(A\)\(A H\) là đường cao \(\Rightarrow \frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A I^{2}} = \frac{1}{a^{2}} + \frac{1}{4 a^{2}} = \frac{5}{4 a^{2}}\).

\(SA\bot\left(\right.ABCD\left.\right)\\\&AH\subset\left(\right.ABCD\left.\right)\left.\right.\Rightarrow SA\bot AH\).

\(\Delta S A H\) vuông tại \(A\)\(A K\) là đường cao \(\Rightarrow \frac{1}{A K^{2}} = \frac{1}{S A^{2}} + \frac{1}{A H^{2}} = \frac{1}{4 a^{2}} + \frac{5}{4 a^{2}} = \frac{6}{4 a^{2}}\)

\(\Rightarrow A K^{2} = \frac{4 a^{2}}{6}\)\(\Rightarrow A K = \frac{2 a}{\sqrt{6}} \Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{2 a}{\sqrt{6}}\).

\(\frac{d \left(\right. D , \left(\right. S B M \left.\right) \left.\right)}{d \left(\right. A , \left(\right. S B M \left.\right) \left.\right)} = \frac{D I}{A I} = \frac{1}{2}\)

\(\Rightarrow d \left(\right. D , \left(\right. S B M \left.\right) \left.\right) = \frac{1}{2} d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{a}{\sqrt{6}}\).