TRIỆU MINH ÁNH

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của TRIỆU MINH ÁNH
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Từ x+y+z=0 suy ra x+y=−z

x2+2xy+y2=z2

x2+y2−z2=−2xy

Tương tự ta có: y2+z2−x2=−2yz và z2+x2−y2=−2zx

Vậy A=\(\dfrac{-3}{2}\)

a) ΔABC vuông tại A suy ra BAC^=90∘ suy ra DAE^=90∘.

Do HD⊥AB suy ra HDA^=90∘HE⊥AC suy ra HEA^=90∘.

Tứ giác ADHE có DAE^=HDA^=HEA^=90∘ suy ra tứ giác ADHE là hình chữ nhật. 

b) Do ΔAHD vuông tại D, áp dụng định lí Pythagore suy ra:

AH2=AD2+DH2

25=16+DH2

DH2=9 nên DH=3 cm.

Do ADHE là hình chữ nhật suy ra SADHE=AD.DH=4.3=12 (cm2).

Vì đồ thị hàm số y=ax+b đi qua điểm A(−1;2) nên ta có:

   2=−1.a+b suy ra −a+b=2

Vi đồ thị hàm số y=ax+b đi qua điểm B(1;4) nên ta có:

   4=1.a+b suy ra a+b=4(2)

Từ (1) và (2) ta tìm được a=1;b=3

Vậy hàm số cần tìm là y=x+3.

 

Từ x+y+z=0 suy ra x+y=−z

x2+2xy+y2=z2

x2+y2−z2=−2xy

Tương tự ta có: y2+z2−x2=−2yz và z2+x2−y2=−2zx

Vậy A=−32

 

a) ΔABC vuông tại A suy ra BAC^=90∘ suy ra DAE^=90∘.

Do HD⊥AB suy ra HDA^=90∘HE⊥AC suy ra HEA^=90∘.

Tứ giác ADHE có DAE^=HDA^=HEA^=90∘ suy ra tứ giác ADHE là hình chữ nhật. 

b) Do ΔAHD vuông tại D, áp dụng định lí Pythagore suy ra:

AH2=AD2+DH2

25=16+DH2

DH2=9 nên DH=3 cm.

Do ADHE là hình chữ nhật suy ra SADHE=AD.DH=4.3=12 (cm2).

Vì đồ thị hàm số y=ax+b đi qua điểm A(−1;2) nên ta có:

   2=−1.a+b suy ra −a+b=2

Vi đồ thị hàm số y=ax+b đi qua điểm B(1;4) nên ta có:

   4=1.a+b suy ra a+b=4(2)

Từ (1) và (2) ta tìm được a=1;b=3

Vậy hàm số cần tìm là y=x+3.

a) Thay x=2 (thỏa mãn điều kiện xác định) vào Q=x+1x2−9, ta được:

Q= \(\dfrac{-3}{5}\)

b) P=\(\dfrac{x+3}{x+1}\)

c) với x=1 thìM=−12

a)5(x+2y)−15x(x+2y)

=5(x+2y).(1−3x)

b) 4x2−12x+9

=[(2x)2−2.2x.3+32]

=(2x−3)2

c) (3x−2)3−3(x−4)(x+4)+(x−3)3−(x+1)(x2−x+1)

=27x3−54x2+36x−8−3(x2−16)+x3−9x2+27x−27−(x3+1)

=(27x3+x3−x3)+(−54x2−3x2−9x2)+(36x+27x)+(−8+48−27−1)

=27x3−66x2+63x+12

x2+xy+2023x+2022y+2023=0

x2+xy+x+2022x+2022y+2022+1=0

x(x+y+1)+2022(x+y+1)=−1

(x+2022)(x+y+1)=−1

x+2022=1 hoặc x+y+1=−1

x+2022=−1 hoặc x+y+1=1

x=−2021 và y=2019 hoặc x=−2023 và y=2023

Vậy (x;y){(2021;2019);(2023;2023)}

a) Xét tứ giác AEDF có:

DE // AF (do DE // AB);

DF // AE (do DF // AC).

Suy ra AEDF là hình bình hành (dhnb)

Mà đường chéo AD là tia phân giác của góc FAE FAE^
 (gt)

Nên AEDF là hình thoi (DHNB).

b) Vì AEDF là hình thoi (cmt) nên DE // AFDE=AF (t/c)

Mà AF=GF (gt) ; G thuộc tia đối của tia FA (gt) nên DE=GFDE // DF 

Xét tứ giác EFGD có: DE=GF (cmt); DE // GF (cmt)

Vậy EFGD là hình bình hành.

c) Theo bài ra, G thuộc tia đối của tia FA và FA=FG suy ra F là trung điểm của AG

Ta có: AG=2AFID=2DF

Mà AF=DF (do AEDF là hình thoi) suy ra AG=ID

Xét tứ giác ADGI có:

Hai đường chéo AG và ID cắt nhau tại trung điểm F của mỗi đường;

Suy ra ADGI là hình bình hành (dhnb)

Lại có AG=ID (cmt) suy ra ADGI là hình chữ nhật (dhnb)

GD // IA suy ra GD // AK (A,I,K thẳng hàng)

Xét tứ giác AKDG có: GD // AK (cmt) ; DK // AG( do DE // AF) 

Suy ra AKDG là hình bình hành (dhnb) 

Khi đó hai đường chéo AD và GK cắt nhau tại trung điểm của mỗi đường 

Mà O là trung điểm của AD (do O là giao điểm của hai đường chéo trong hình thoi AEDF) 

Vậy O là trung điểm của GK.