VŨ ĐÌNH LONG

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của VŨ ĐÌNH LONG
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)
Play Mute Remaining Time -10:55Close PlayerUnibots.com

TRẢ LỜI

icon

Giải thích các bước giải:

a.Ta có: BC2=AB2+AC2=AD2+AC2=CD2

BC=CD

→ΔCBD cân tại C

b. Xét ΔMDEMCB có:

ˆMDE=ˆMCB vì DE//BC

MD=MC vì M là trung điểm CD

ˆDME=ˆBMC

→ΔMDEMCB(g.c.g)

BC=DE

BC+BD=DE+DB>BE

c.Ta có: A,M là trung điểm BD,BE  

              EADM=GG là trọng tâm ΔBDE

BC=CD=2DM=2⋅3GM=6GM

Gọi số cây ba lớp 7A, 7B, 7C lần lượt trồng được là \(a , b , c\) (cây) (\(a , b , c \in N^{*}\) )

Theo đề bài ta có:

+) Tổng số cây ba lớp 7A, 7B, 7C trồng được là 118
Do đó: \(a + b + c = 118\)

+) Ba lớp 7A, 7B, 7C có lần lượt 18, 20, 21 học sinh và năng suất mỗi người như nhau
Suy ra: \(\frac{a}{18} = \frac{b}{20} = \frac{c}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(a + b + c = 118\) được:

\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21} = \frac{a + b + c}{18 + 20 + 21} = \frac{118}{59} = 2\)

Suy ra: \(a = 18 \cdot 2 = 36\) (thỏa mãn điều kiện)

\(b = 20 \cdot 2 = 40\) (thỏa mãn điều kiện)

\(c = 21 \cdot 2 = 42\) (thỏa mãn điều kiện)


a) \(H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right)\)

\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 5 x^{2} - 7 x - 2024 \left.\right) + \left(\right. - 2 x^{3} + 9 x^{2} + 7 x + 2025 \left.\right)\)

\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 2 x^{3} \left.\right) + \left(\right. 9 x^{2} - 5 x^{2} \left.\right) + \left(\right. 7 x - 7 x \left.\right) + \left(\right. 2025 - 2024 \left.\right)\)

\(H \left(\right. x \left.\right) = 4 x^{2} + 1\)

b) Ta có: \(x^{2} \geq 0 , \forall x\)

\(\Rightarrow 4 x^{2} \geq 0 , \forall x\)

\(\Rightarrow 4 x^{2} + 1 \geq 1 > 0\)

hay \(H \left(\right. x \left.\right) = 4 x^{2} + 1\) vô nghiệm

f(a)+f(b)=f(a)+f(1−a)=100a+10100a+1001−a+101001−a=100a+10100a+100a100+10100a100​​=100a+10100a+100a100.100+10.100a100a=100a+10100a+10+100a10=10+100a100a+10=

f(a)+f(b)=f(a)+f(1−a)=100a+10100a+1001−a+101001−a=100a+10100a+100a100+10100a100​​=100a+10100a+100a100.100+10.100a100a=100a+10100a+10+100a10=10+100a100a+10=

f(a)+f(b)=f(a)+f(1−a)=100a+10100a+1001−a+101001−a=100a+10100a+100a100+10100a100​​=100a+10100a+100a100.100+10.100a100a=100a+10100a+10+100a10=10+100a100a+10=

a) Xét △���△ABC có �^+�^+�^=180∘A^+B^+C^=180∘ mà �^=90∘;�^=50∘A^=90∘;B^=50∘ suy ra 90∘+50∘+�^=180∘=>�^=40∘90∘+50∘+C^=180∘=>C^=40∘
b) Xét tam giác △���△BEA và △���△BEH.
có ��BE là cạnh chung
 ���^=���^(=90∘)��=�� suy  ra △���=△��� (c.h-cgv) ⇒���^=���^  suy ⇒BAE=BHE(=90∘)BA=BH ra △ABE=△HBE (c.h-cgv) ABE=HBE.
=>��=>BE là phân giác của �^B
c) �E là giao điểm của hai đường cao trong tam giác ���BKC nên ��BE vuông góc với ��KC.

Tam giác ���BKC cân tại �B có ��BI là đường cao nên ��BI là đường trung tuyến. Do đó �I là trung điểm của ��KC

Gọi số sách 2 lớp 7A và 7B lần lượt là a và b ( sách, a,b thuộc N*) 

Ta có a + b = 121 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

a/5 = b/6 = a+b/ 5+6 = 121/11 = 11

Quyển sách lớp 7A quyên góp được là: 

11 x 5 = 55 

Số sách 7B quyên góp được là 

11 x 6 = 66 

Gọi số sách 2 lớp 7A và 7B lần lượt là a và b ( sách, a,b thuộc N*) 

Ta có a + b = 121 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

a/5 = b/6 = a+b/ 5+6 = 121/11 = 11

Quyển sách lớp 7A quyên góp được là: 

11 x 5 = 55 

Số sách 7B quyên góp được là 

11 x 6 = 66 

a) Ta có:

A(x) + B(x) = (2x3 - x2 + 3x - 5) + (2x3 + x2 + x + 5)

                  = 4x3 + 4x

b) Ta có H(x) = A(x) + B(x) = 4x3 + 4x = 0

                                      => 4x(x2 + 1) = 0

                                      => 4x = 0 hoặc x2 + 1 = 0

                                      => x = 0 : 4 = 0 hoặc x2 = 0 - 1 = -1 (vô lí)

Vậy nghiệm của H(x) = A(x) + B(x) là x = 0