Vũ Ngọc Bảo Trân

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Vũ Ngọc Bảo Trân
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Xét \(\Delta A B C\)\(\Delta A D C\)

\(\hat{C A B} = \hat{C A D} = 9 0^{\circ}\)

\(A C\) chung

\(A B = A D\) (giả thiết)

Do đó \(\Delta A B C = \Delta A D C\) (c - g - c)

Suy ra \(C B = C D\) (hai cạnh tương ứng)

Vậy \(\Delta C B D\) cân tại \(C\).

b) Ta có \(D E\) // \(B C\) nên \(\hat{C M B} = \hat{M E D}\)

Lại có \(\hat{B M C} = \hat{D M E}\) (đối đỉnh) (1)

\(\hat{M D E} = 18 0^{\circ} - \hat{D M E} - \hat{M E D}\)

\(\hat{B M C} = 18 0^{\circ} - \hat{C B M} - \hat{B M C}\)

Suy ra \(\hat{B C M} = \hat{M D E}\) (2)

Mặt khác \(M D = M C\) (giả thiết) (3)

Từ (1), (2), (3) suy ra \(\Delta M B C = \Delta M E D\) (g - c - g)

Suy ra \(D C = D E\)\(D C = B C\) nên \(D E = B C\) (điều phải chứng minh).

Gọi số cây trồng được của mỗi lớp 7A, 7B, 7C lần lượt là \(a\), \(b\), \(c\) (\(a , b , c \in \mathbb{N}^{*}\))

Vì năng suất mỗi người như nhau nên số học sinh và số cây trồng được tỉ lệ thuận với nhau, theo đề ta có:

\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21}\)\(a + b + c = 118\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21} = \frac{a + b + c}{18 + 20 + 21} = \frac{118}{59} = 2\)

\(a = 18.2 = 36\)

\(b = 20.2 = 40\)

\(c = 21.2 = 42\)

Vậy lớp 7A, 7B, 7C trồng được số cây lần lượt là \(36\) (cây), \(40\) (cây), \(42\) (cây).

a) \(H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 5 x^{2} - 7 x - 2 024 \left.\right) + \left(\right. - 2 x^{3} + 9 x^{2} + 7 x + 2 025 \left.\right)\)

\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 2 x^{3} \left.\right) + \left(\right. - 5 x^{2} + 9 x^{2} \left.\right) + \left(\right. - 7 x + 7 x \left.\right) + \left(\right. - 2 024 + 2 025 \left.\right)\)

\(H \left(\right. x \left.\right) = 4 x^{2} + 1\).

b) \(H \left(\right. x \left.\right) = 4 x^{2} + 1\)

\(4 x^{2} \geq 0\) với mọi \(x\) nên \(4 x^{2} + 1 > 0\) với mọi \(x\)

Suy ra \(H \left(\right. x \left.\right) \neq 0\) với mọi giá trị của \(x\)

Vậy đa thức \(H \left(\right. x \left.\right)\) vô nghiệm.

Từ \(x - y - z = 0 \Rightarrow \&\text{nbsp}; \left{\right. & x - z = y \&\text{nbsp};\&\text{nbsp}; \\ & \&\text{nbsp}; y - x = - z \\ & \&\text{nbsp}; z + y = x\).

\(B = \left(\right. 1 - \frac{z}{x} \left.\right) \left(\right. 1 - \frac{x}{y} \left.\right) \left(\right. 1 + \frac{y}{z} \left.\right) = \frac{x - z}{z} . \frac{y - x}{y} . \frac{z + y}{z} = \frac{y}{x} . \frac{- z}{y} . \frac{x}{z} = - 1\)

Vậy \(B = - 1\).

Từ \(x - y - z = 0 \Rightarrow \&\text{nbsp}; \left{\right. & x - z = y \&\text{nbsp};\&\text{nbsp}; \\ & \&\text{nbsp}; y - x = - z \\ & \&\text{nbsp}; z + y = x\).

\(B = \left(\right. 1 - \frac{z}{x} \left.\right) \left(\right. 1 - \frac{x}{y} \left.\right) \left(\right. 1 + \frac{y}{z} \left.\right) = \frac{x - z}{z} . \frac{y - x}{y} . \frac{z + y}{z} = \frac{y}{x} . \frac{- z}{y} . \frac{x}{z} = - 1\)

Vậy \(B = - 1\).

Từ \(x - y - z = 0 \Rightarrow \&\text{nbsp}; \left{\right. & x - z = y \&\text{nbsp};\&\text{nbsp}; \\ & \&\text{nbsp}; y - x = - z \\ & \&\text{nbsp}; z + y = x\).

\(B = \left(\right. 1 - \frac{z}{x} \left.\right) \left(\right. 1 - \frac{x}{y} \left.\right) \left(\right. 1 + \frac{y}{z} \left.\right) = \frac{x - z}{z} . \frac{y - x}{y} . \frac{z + y}{z} = \frac{y}{x} . \frac{- z}{y} . \frac{x}{z} = - 1\)

Vậy \(B = - 1\).

Ta có hình vẽ:

loading... 

Gọi vị trí đặt loa là \(D\) suy ra \(D\) nằm giữa \(A\) và \(B\).Trong tam giác vuông \(A D C\) ta có \(D C\) là cạnh lớn nhất (đối diện với góc lớn nhất) nên \(D C > A C = 550\) m. Vậy tại \(C\) không thể nghe tiếng loa, do vị trí \(C\) đã nằm ngoài bán kính phát sóng của loa.

GT

\(\Delta A B C\) vuông tại \(A\)
\(A B = 3\)cm, \(A C = 4\) cm
\(B D\) là tia phân giác, \(\left(\right. D \in A C \left.\right)\)
Kẻ \(D E ⊥ B C \left(\right. E \in B C \left.\right)\).

KT

a) Chứng minh \(\Delta A B D = \Delta E B D\).
b) Chứng minh: \(D F > D E\).

a) Xét \(\Delta A B D\) và \(\Delta E B D\) có

  \(\hat{B A D} = \hat{B E D} = 9 0^{\circ}\) (gt)

  \(B D\) là cạnh chung.

  \(\hat{A B D} = \hat{E B D}\) (gt).

Suy ra \(\Delta A B D = \Delta E B D\) (cạnh huyền - góc nhọn).

b) Chứng minh \(D F > D A\) mà \(D A = D E\).

Từ đó suy ra \(D F > D E\).

a)x/5=-3/15

=>15x=-3.5

=>x=-1

b)áp dụng tính chất dãy tỉ số bằng nhau , ta có

x/17=y/12=x-y/17-12=10/2=5

vậy x=34 và y=24

a) 3x + 5 tại x = -6

(-6) + 5 = -13

b) 2m2 - 3n + 7 tại m = -2 và n = -1

( -2)2 - 3 . ( -1) + 7 = 18