

ĐỨC THẮNG
Giới thiệu về bản thân



































a) Tứ giác \(D K M N\) có \(\hat{D} = \hat{K} = \hat{N} = 90^{\circ}\) nên là hình chữ nhật.
b) Vì \(D K M N\) là hình chữ nhật nên \(D F\) // \(M H\)
Xét \(\Delta K F M\) và \(\Delta N M E\) có:
\(\hat{K} = \hat{N} = 90^{\circ}\)
\(F M = M E\) ( giả thiết)
\(\hat{K M F} = \hat{E}\) (đồng vị)
Vậy \(\Delta K F M = \Delta N M E\) (cạnh huyền - góc nhọn)
Suy ra \(K F = M N\) (hai cạnh tương ứng) mà \(M N = D K\) nên \(D F = 2 D K\) và \(M H = 2 M N\).
Do đó \(D F = M H\).
Tứ giác \(D F M H\) có \(D F\) // \(M H , D F = M H\) nên là hình bình hành.
Do đó, hai đường chéo \(D M , F H\) cắt nhau tại trung điểm \(O\) của mỗi đường hay \(F , O , H\) thẳng hàng.
c) Để hình chữ nhật \(D K M N\) là hình vuông thì \(D K = D N\) \(\left(\right. 1 \left.\right)\)
Mà \(D K = \frac{1}{2} D F\) và \(D N = K M = N E\) nên \(D N = \frac{1}{2} D E\) \(\left(\right. 2 \left.\right)\)
Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(D F = D E\).
Vậy \(\Delta D F E\) cần thêm điều kiên cân tại \(D\).
a) Tứ giác \(D K M N\) có \(\hat{D} = \hat{K} = \hat{N} = 90^{\circ}\) nên là hình chữ nhật.
b) Vì \(D K M N\) là hình chữ nhật nên \(D F\) // \(M H\)
Xét \(\Delta K F M\) và \(\Delta N M E\) có:
\(\hat{K} = \hat{N} = 90^{\circ}\)
\(F M = M E\) ( giả thiết)
\(\hat{K M F} = \hat{E}\) (đồng vị)
Vậy \(\Delta K F M = \Delta N M E\) (cạnh huyền - góc nhọn)
Suy ra \(K F = M N\) (hai cạnh tương ứng) mà \(M N = D K\) nên \(D F = 2 D K\) và \(M H = 2 M N\).
Do đó \(D F = M H\).
Tứ giác \(D F M H\) có \(D F\) // \(M H , D F = M H\) nên là hình bình hành.
Do đó, hai đường chéo \(D M , F H\) cắt nhau tại trung điểm \(O\) của mỗi đường hay \(F , O , H\) thẳng hàng.
c) Để hình chữ nhật \(D K M N\) là hình vuông thì \(D K = D N\) \(\left(\right. 1 \left.\right)\)
Mà \(D K = \frac{1}{2} D F\) và \(D N = K M = N E\) nên \(D N = \frac{1}{2} D E\) \(\left(\right. 2 \left.\right)\)
Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(D F = D E\).
Vậy \(\Delta D F E\) cần thêm điều kiên cân tại \(D\).
a) Tứ giác \(D K M N\) có \(\hat{D} = \hat{K} = \hat{N} = 90^{\circ}\) nên là hình chữ nhật.
b) Vì \(D K M N\) là hình chữ nhật nên \(D F\) // \(M H\)
Xét \(\Delta K F M\) và \(\Delta N M E\) có:
\(\hat{K} = \hat{N} = 90^{\circ}\)
\(F M = M E\) ( giả thiết)
\(\hat{K M F} = \hat{E}\) (đồng vị)
Vậy \(\Delta K F M = \Delta N M E\) (cạnh huyền - góc nhọn)
Suy ra \(K F = M N\) (hai cạnh tương ứng) mà \(M N = D K\) nên \(D F = 2 D K\) và \(M H = 2 M N\).
Do đó \(D F = M H\).
Tứ giác \(D F M H\) có \(D F\) // \(M H , D F = M H\) nên là hình bình hành.
Do đó, hai đường chéo \(D M , F H\) cắt nhau tại trung điểm \(O\) của mỗi đường hay \(F , O , H\) thẳng hàng.
c) Để hình chữ nhật \(D K M N\) là hình vuông thì \(D K = D N\) \(\left(\right. 1 \left.\right)\)
Mà \(D K = \frac{1}{2} D F\) và \(D N = K M = N E\) nên \(D N = \frac{1}{2} D E\) \(\left(\right. 2 \left.\right)\)
Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(D F = D E\).
Vậy \(\Delta D F E\) cần thêm điều kiên cân tại \(D\).
a) Tứ giác \(A M C K\) có hai đường chéo \(A C , M K\) cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
\(\Delta A B C\) vuông tại \(A\) có \(A M\) là đường trung tuyến nên \(A M = M C = M B\).
Vậy hình bình hành \(A M C K\) có \(A M = M C\) nên là hình thoi.
b) Vì \(A M C K\) là hình thoi nên \(A K\) // \(B M\) và \(A K = M C = B M\).
Tứ giác \(A K M B\) có \(A K\) // \(B M , A K = B M\) nên là hình bình hành.
c) Để \(A M C K\) là hình vuông thì cần có một góc vuông hay \(A M ⊥ M C\).
Khi đó \(\Delta A B C\) có \(A M\) vừa là đường cao vừa là đường trung tuyến nên cân tại \(A\).
Vậy \(\Delta A B C\) vuông cân tại \(A\) thì \(A M C K\) là hình vuông.
a) \(\Delta A B C\) vuông cân nên \(\hat{B} = \hat{C} = 45^{\circ} .\)
\(\Delta B H E\) vuông tại \(H\) có \(\hat{B E H} + \hat{B} = 90^{\circ}\)
Suy ra \(\hat{B E H} = 90^{\circ} - 45^{\circ} = 45^{\circ}\) nên \(\hat{B} = \hat{B E H} = 45^{\circ}\).
Vậy \(\Delta B E H\) vuông cân tại \(H .\)
b) Chứng minh tương tự câu a ta được \(\Delta C F G\) vuông cân tại \(G\) nên \(G F = G C\) và \(H B = H E\)
Mặt khác \(B H = H G = G C\) suy ra \(E H = H G = G F\) và \(E H\) // \(F G\) (cùng vuông góc với \(B C \left.\right)\)
Tứ giác \(E F G H\) có \(E H\) // \(F G , E H = F G\) nên là hình bình hành.
Hình bình hành \(E F G H\) có một góc vuông \(\hat{H}\) nên là hình chữ nhật
Hình chữ nhật \(E F G H\) có hai cạnh kề bằng nhau \(E H = H G\) nên là hình vuông.
Tứ giác \(O B A C\) có ba góc vuông \(\hat{B} = \hat{C} = \hat{B O C} = 90^{\circ}\)
Nên \(O B A C\) là hình chữ nhật.
Mà \(A\) nằm trên tia phân giác \(O M\) suy ra \(A B = A C\).
Khi đó \(O B A C\) là hình vuông.
a) \(A B C D\) là hình bình hành nên hai đường chéo \(A C , B D\) cắt nhau tại \(O\) là trung điểm của mỗi đường.
Xét \(\Delta O B M\) và \(\Delta O D P\) có:
\(O B = O D\) ( giả thiết)
\(\hat{O B M} = \hat{O D P}\) (so le trong)
\(\hat{B O M} = \hat{D O P}\) (đối đỉnh)
Vậy \(\Delta O B M = \Delta O D P\) (g.c.g)
Suy ra \(O M = O P\) (hai cạnh tương ứng)
Chứng minh tương tự \(\Delta O A Q = \Delta O C N\) (g.c.g) suy ra \(O Q = O N\) (hai cạnh tương ứng)
\(M N P Q\) có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
b) Hình bình hành \(M N P Q\) có hai đường chéo \(M P ⊥ N Q\) nên là hình thoi.
a) \(A B C D\) là hình bình hành nên \(A B = D C\) suy ra \(\frac{1}{2} A B = \frac{1}{2} D C\)
Do đó \(A M = B M = D N = C N\).
Tứ giác \(A M C N\) có \(A M\) // \(N C , A M = N C\) nên là hình bình hành.
Lại có \(\Delta A D C\) vuông tại \(A\) có \(A N\) là đường trung tuyến nên \(A N = \frac{1}{2} D C = D N = C N\).
Hình bình hành \(A M C N\) có hai cạnh kề bằng nhau nên là hình thoi, khi đó hai đường chéo \(A C , M N\) vuông góc với nhau.
b) Tứ giác \(A M C N\) là hình thoi.
Ta có \(A B C D\) là hình thoi nên \(A C ⊥ B D\) tại trung điểm của mỗi đường nên \(B D\) là trung trực của \(A C\)
Suy ra \(G A = G C , H A = H C\) \(\left(\right. 1 \left.\right)\)
Và \(A C\) là trung trực của \(B D\) suy ra \(A G = A H , C G = C H\) \(\left(\right. 2 \left.\right)\)
Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(A G = G C = C H = H A\) nên \(A G C H\) là hình thoi.