ĐOÀN ANH THÁI

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của ĐOÀN ANH THÁI
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)

Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).

YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log⁡2t1+log⁡2t2=5log2t1+log2t2=5

\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)

\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)

\(\Leftrightarrow m = 32\).


Ta có: \(P \left(\right. A \left.\right) = 0 , 2 ; P \left(\right. B \left.\right) = 0 , 3 ; P \left(\right. \overset{\overline}{A} \left.\right) = 0 , 8 ; P \left(\right. \overset{\overline}{B} \left.\right) = 0 , 7.\)

a) Gọi \(C\) là biến cố: "Lần bắn thứ nhất trúng bia, lần bắn thứ hai không trúng bia".

Ta có: \(C = \overset{\overline}{A} B\)\(\overset{\overline}{A} , B\) là hai biến cố độc lập

\(\Rightarrow P \left(\right. C \left.\right) = P \left(\right. \overset{\overline}{A} \left.\right) . P \left(\right. B \left.\right) = 0 , 8.0 , 3 = 0 , 24.\)

b) Gọi biến cố \(D\): "Có ít nhất một lần bắn trúng bia".

Khi đó, biến cố \(\overset{\overline}{D}\): "Cả hai lần bắn đều không trúng bia".

\(\Rightarrow \overset{\overline}{D} = A B \Rightarrow P \left(\right. \overset{\overline}{D} \left.\right) = 0 , 06\)

\(\Rightarrow P \left(\right. D \left.\right) = 1 - P \left(\right. \overset{\overline}{D} \left.\right) = 0 , 94.\)

ΔSAB vuông tại \(A \Rightarrow S A ⊥ A B\).

\(\Delta S A D\) vuông tại \(A \Rightarrow S A ⊥ A D\).

Suy ra \(S A ⊥ \left(\right. A B C D \left.\right)\).

Gọi \(I\) là giao điểm của \(B M\)\(A D\).

Dựng \(A H\) vuông góc với \(B M\) tại \(H\).

Dựng \(A K\) vuông góc với \(S H\) tại \(K\).

\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & B M \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ B M\)\(B M ⊥ A H\)

\(\Rightarrow B M ⊥ \left(\right. S A H \left.\right)\).

Ta có \(& B M ⊥ \left(\right. S A H \left.\right) \\ & B M \subset \left(\right. S B M \left.\right) \left.\right} \Rightarrow \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right)\)

Ta có \(& \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right) \\ & \left(\right. S A H \left.\right) \cap \left(\right. S B M \left.\right) = S H \\ & A K \subset \left(\right. S A H \left.\right) , A K ⊥ S H \left.\right} \Rightarrow A K ⊥ \left(\right. S B M \left.\right)\)

\(\Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = A K\)

Xét \(\Delta I A B\)\(M D\) // \(A B \Rightarrow \frac{I D}{I A} = \frac{M D}{A B} = \frac{\frac{1}{2} C D}{A B} = \frac{1}{2}\)

\(\Rightarrow D\) là trung điểm của \(I A\) \(\Rightarrow I A = 2 A D = 2 a\).

\(\Delta A B I\) vuông tại \(A\)\(A H\) là đường cao \(\Rightarrow \frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A I^{2}} = \frac{1}{a^{2}} + \frac{1}{4 a^{2}} = \frac{5}{4 a^{2}}\).

\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & A H \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ A H\).

\(\Delta S A H\) vuông tại \(A\)\(A K\) là đường cao \(\Rightarrow \frac{1}{A K^{2}} = \frac{1}{S A^{2}} + \frac{1}{A H^{2}} = \frac{1}{4 a^{2}} + \frac{5}{4 a^{2}} = \frac{6}{4 a^{2}}\)

\(\Rightarrow A K^{2} = \frac{4 a^{2}}{6}\)\(\Rightarrow A K = \frac{2 a}{\sqrt{6}} \Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{2 a}{\sqrt{6}}\).

\(\frac{d \left(\right. D , \left(\right. S B M \left.\right) \left.\right)}{d \left(\right. A , \left(\right. S B M \left.\right) \left.\right)} = \frac{D I}{A I} = \frac{1}{2}\)

\(\Rightarrow d \left(\right. D , \left(\right. S B M \left.\right) \left.\right) = \frac{1}{2} d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{a}{\sqrt{6}}\)