

Đàm Thùy Dương
Giới thiệu về bản thân



































Gọi số hàng dọc chia được là \(x\) (hàng), \(x \in \mathbb{N}\) và \(x \geq 5\).
Theo bài ra ta có:48:x; \(18:x\)
Suy ra \(x \in\) ƯC\(\left(\right. 18 , 48 \left.\right)\).
Ta có: \(18 = 2. 3^{2}\); \(48 = 2^{4} . 3\)
Suy ra ƯCLN\(\left(\right. 18 , 48 \left.\right) = 2.3 = 6\)
Do đó, \(x \in\) ƯC\(\left(\right. 18 , 48 \left.\right)\) = Ư(6)= {1;2;3;6}
Mà \(x \geq \&\text{nbsp}; 5\) nên \(x = 6\).
Vậy có thể xếp được thành \(6\) hàng dọc.
\(\left(\right. 454 - x \left.\right) + 4^{3} = 116\)
\(15\) chia hết cho \(1\); \(3\); \(5\) và \(15\).
Ta có bảng sau:
\(x + 1\) |
\(1\)
|
\(3\)
|
\(5\)
|
\(15\)
|
\(x\) | \(0\) | \(2\) | \(4\) | vv |
a) \(- 127 + 208 - 73 + 92\)
\(= \left(\right. - 127 - 73 \left.\right) + \left(\right. 208 + 92 \left.\right)\)
\(= - 200 + 300 = 100\).
b) \(2 353 - \left(\right. 473 + 2 153 \left.\right) + \left(\right. - 55 + 373 \left.\right)\)
\(= 2 353 - 473 - 2 153 - 55 + 373\)
\(= \left(\right. 2 353 - 2 153 \left.\right) + \left(\right. 373 - 473 \left.\right) - 55\)
\(= 200 - 100 - 55\)
\(= 45\).
Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
1. Trong hình vẽ có 4 bộ ba điểm thẳng là:
+) \(A , C , D\)
+) \(A , B , E\)
+) \(C , E , F\)
+) \(D , E , B\)
2.
a) Theo hình vẽ, ta có: \(A I + I B = A B\)
Hay \(4 + I B = 9\)
\(I B = 9 - 4 = 5\) cm
b) Vì \(E\) là trung điểm của \(I B\) nên
\(E I = E B = \frac{I B}{2} = \frac{5}{2} = 2 , 5\) (cm)
Theo hình vẽ, ta có: \(A E = A I + I E = 4 + 2 , 5 = 6 , 5\) (cm)
1. Trong hình vẽ có 4 bộ ba điểm thẳng là:
+) \(A , C , D\)
+) \(A , B , E\)
+) \(C , E , F\)
+) \(D , E , B\)
2.
a) Theo hình vẽ, ta có: \(A I + I B = A B\)
Hay \(4 + I B = 9\)
\(I B = 9 - 4 = 5\) cm
b) Vì \(E\) là trung điểm của \(I B\) nên
\(E I = E B = \frac{I B}{2} = \frac{5}{2} = 2 , 5\) (cm)
Theo hình vẽ, ta có: \(A E = A I + I E = 4 + 2 , 5 = 6 , 5\) (cm)
Chiều dài đám đất là:
\(60. \frac{4}{3} = 80\) (m)
Diện tích đám đất là:
\(60.80 = 4 800\) (m\(^{2}\))
Diện tích trồng cây là:
\(4 800. \frac{7}{12} = 2 800\) (m\(^{2}\))
Diện tích còn lại là:
\(4 800 - 2 800 = 2 000\) (m\(^{2}\))
Diện tích ao cá:
\(2 000.30 \% = 600\) (m\(^{2}\))
a) \(\frac{- 5}{9} + \frac{8}{15} + \frac{- 2}{11} + \frac{4}{- 9} + \frac{7}{15} = \left(\right. \frac{- 5}{9} + \frac{- 4}{9} \left.\right) + \left(\right. \frac{8}{15} + \frac{7}{15} \left.\right) + \frac{- 2}{11}\)
\(= \frac{- 9}{9} + \frac{15}{15} + \frac{- 2}{11}\)
\(= - 1 + 1 + \frac{- 2}{11}\)
\(= 0 + \frac{- 2}{11} = \frac{- 2}{11}\).
b) \(\left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} : \frac{2}{7} \left.\right)\)
\(= \left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} . \frac{7}{2} \left.\right)\)
\(= \frac{7}{2} . \left(\right. \frac{5}{6} + \frac{7}{6} \left.\right)\)
\(= \frac{7}{2} . 2\)
\(= 7\)
a) Có \(\frac{- 3}{8} = \frac{- 9}{24} ; \frac{5}{- 12} = \frac{- 10}{12}\)
Vì \(\frac{- 9}{24} > \frac{- 10}{24}\) nên \(\frac{- 3}{8} > \frac{5}{- 12}\).
b) Có \(\frac{3131}{5252} = \frac{3131 : 101}{5252 : 101} = \frac{31}{52}\).
Vậy \(\frac{3131}{5252} = \frac{31}{52}\).
a) Diện tích mảnh vườn hình chữ nhật là:
(m
2)
b) Quãng đường ông Đức đi một vòng xung quanh vườn dài:
(m)
c) Diện tích trồng hoa là:
(m2
)
Đáp số: a) 700 m2
b) 110 m
c) 350 m2