Xyz OLM
Giới thiệu về bản thân
a) Với x = 9 ta có : \(A=\dfrac{2\sqrt{9}}{3+\sqrt{9}}=1\)
b) \(B=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}:\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\)
\(=\dfrac{1}{\sqrt{x}-5}:\dfrac{\sqrt{x}+3}{\sqrt{x}-5}=\dfrac{1}{\sqrt{x}+3}\) (đpcm)
c) \(P=A-6B=\dfrac{2\sqrt{x}-6}{\sqrt{x}+3}\)
Có \(P< 0\Leftrightarrow2\sqrt{x}-6< 0\) (Vì \(\sqrt{x}+3>0\forall x\))
\(\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\)
=> x = 8 là giá trị nguyên lớn nhất để P < 0
\(P=\sqrt{\dfrac{3a^2+1}{3b^2+1}}+\sqrt{\dfrac{3b^2+1}{3c^2+1}}+\sqrt{\dfrac{3c^2+1}{3a^2+1}}\) (1)
hay \(P=\sqrt{3a^2+\dfrac{1}{3b^2}+1}+\sqrt{3b^2+\dfrac{1}{3c^2}+1}+\sqrt{3c^2+\dfrac{1}{3a^2}+1}\) (2)
vậy ?
2c. ĐKXĐ \(x\ge1\) (*)
Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1)
Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)
Từ (1) có \(a^2+b^3=1\) (2)
Thế a = b + 5 vào (2) ta được
\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)
\(\Leftrightarrow b^3+8+b^2+10b+16=0\)
\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)
\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)
Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm)
Tập nghiệm \(S=\left\{10\right\}\)
2b. ĐKXĐ : \(x\ge-5\) (*)
Ta có \(\sqrt{x+5}=x^2-5\)
\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)
\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)
Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\) ; ĐK: \(\left(x\le-1\right)\)
\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\)
Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc
Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)
Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc
Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
ĐKXĐ : \(x>0\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có
\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)
Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)
Ta có \(v_0=20\)(m/s)
Chiếu \(\overrightarrow{v_0}\) lên hệ trục Oxy
\(\Rightarrow v_x=v_0.\cos\alpha=20.\cos\alpha\) (m/s)
\(v_y=20.\sin\alpha\) (m/s)
Phương trình chuyển động
\(x=v_x.t=20\cos\alpha.t\)
\(y=v_y.t-\dfrac{1}{2}gt^2=20\sin\alpha.t-5t^2\)
mà \(x_{max}=30m\Leftrightarrow y=0\)
\(y=0\Leftrightarrow t=4\sin\alpha\)
Khi đó \(x_{max}=20\cos\alpha.t=30\left(m\right)\)
\(\Leftrightarrow\cos\alpha.\sin\alpha=\dfrac{3}{8}\)
\(\Leftrightarrow\sin\left(2\alpha\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\alpha\approx24,3^{\text{o}}\)
b) Dựa vào câu a ta có vật đạt \(x_{max}\Leftrightarrow y=0\)
Khi đó ta có \(x_{max}=80.\sin\alpha.\cos\alpha=40.\sin2\alpha\)
mà \(\sin2\alpha\le1\) nên \(x_{max}\le80\) (m)
Dấu "=" khi \(\sin2\alpha=1\Leftrightarrow\alpha=45^{\text{o}}\)
Ta có : \(\dfrac{4a-3b}{2}=\dfrac{5b-4c}{3}=\dfrac{3c-5a}{4}\)
\(\Leftrightarrow\dfrac{20a-15b}{10}=\dfrac{15b-12c}{9}=\dfrac{12c-20a}{16}=\dfrac{20a-15b+15b-12c+12c-20a}{10+9+16}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-3b=0\\5b-4c=0\\3c-5a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\\\dfrac{c}{5}=\dfrac{a}{3}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(A=\dfrac{2005\times2008-1005}{2006\times2007-1007}\)
\(=\dfrac{2005\times2008-2005+1000}{2006\times2007-2007+1000}\)
\(=\dfrac{2005\times2007+1000}{2007\times2005+1000}=1\)
ĐKXĐ : \(x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}\ne0\)
\(\Leftrightarrow x\ne\sqrt[4]{2}\)
\(P=\dfrac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}}\)
\(=\dfrac{x^2-\sqrt{2}}{\left(x^4-\sqrt{2}x^2\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)
\(=\dfrac{x^2-\sqrt{2}}{\left(x^2+\sqrt{3}\right)\left(x^2-\sqrt{2}\right)}=\dfrac{1}{x^2+\sqrt{3}}\)