Xyz OLM
Giới thiệu về bản thân
Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
a) \(n_{H_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\) (*)
Phương trình hóa học
Mg + 2HCl ---> MgCl2 + H2 (**)
MgO + 2HCl ---> MgCl2 + H2O (***)
b) Từ (*) và (**) ta có \(n_{Mg}=0,15\Leftrightarrow m_{Mg}=0,15.24=3,6\left(g\right)\)
\(\Rightarrow m_{MgO}=10-3,6=6,4\left(g\right)\)
\(\%Mg=\dfrac{3,6}{10}.100\%=36\%\)
\(\%MgO=\dfrac{6,4}{10}.100\%=64\%\)
c) Xét phản ứng (**) ta có \(m_{MgO}=6,4\left(g\right)\Leftrightarrow n_{MgO}=n_{MgCl_2}=\dfrac{1}{2}n_{HCl}=0,16\left(mol\right)\) (1)
\(\Leftrightarrow n_{HCl}=0,32\left(mol\right)\)
Tương tự có số mol HCl trong phản ứng (*) là 0,3 mol
\(C_M=\dfrac{0,32+0,3}{0,2}=3,1\left(M\right)\)
d) Từ (1) ; (*) ; (**) ta có : \(n_{MgCl_2}=0,15+0,16=0,31\left(mol\right)\)
\(m_{MgCl_2}=0,31.95=29,45\left(g\right)\)
e) \(C_M=\dfrac{0,31}{0,2}=1,55\left(M\right)\)
b) Chọn gốc O \(\equiv B\) tại vị trí ném , chọn hệ trục Oxy như hình vẽ,
chiều dương theo chiều Ox,Oy
Phương trình tọa độ :
\(x=v_0.\cos60^{\text{o}}.t=\dfrac{v_0.t}{2}\)
\(y=v_0.\sin60^{\text{o}}.t-\dfrac{1}{2}gt^2=\dfrac{\sqrt{3}v_0.t}{2}-5t^2\)
lại có \(AH=15\left(m\right);BH=15\sqrt{3}\left(m\right)\)
mà vật từ B rơi trúng A nên \(\left\{{}\begin{matrix}x=\dfrac{v_0t}{2}=15\sqrt{3}\\y=\dfrac{\sqrt{3}}{2}v_0t-5t^2=15\end{matrix}\right.\)
Giải hệ được \(v_0=15\sqrt{2}\left(m/s\right)\)
P/s : Sửa AB thành BH ở câu a
a) Chọn gốc tọa độ là điểm ném O \(\equiv A\) ; chọn hệ trục tọa độ như hình vẽ , chiều dương hướng xuống , theo hướng ném
Phương trình tọa độ :
x = \(v_0.t\) ;
y = \(\dfrac{1}{2}gt^2=5t^2\)
Vì chiều dài đồi là L = 30m
nên chiều cao AH của đồi là \(AH=L.\sin30^{\text{o}}=15\left(m\right)\) ;
chiều dài đồi \(AB=L.\cos30^{\text{o}}=15\sqrt{3}\left(m\right)\)
Vì vật rơi trúng B nên \(x=AB=15\sqrt{3};y=AH=15\)
Giải hệ ta được \(v_0=15\left(m/s\right)\)
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(P=n^3+n+2\)
\(=\left(n^3+1\right)+\left(n+1\right)\)
\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)
\(=\left(n+1\right).\left(n^2-n+2\right)\)
Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)
nên P là hợp số
ĐKXĐ : \(x\ge1;y\ge1\)
Ta có \(x\sqrt{y-1}+2y\sqrt{x-1}=\dfrac{3xy}{2}\)
\(\Leftrightarrow2x\sqrt{y-1}+4y\sqrt{x-1}=3xy\)
\(\Leftrightarrow\left(2x\sqrt{y-1}-xy\right)+\left(4y\sqrt{x-1}-2xy\right)=0\)
\(\Leftrightarrow x\left(2\sqrt{y-1}-y\right)+2y\left(2\sqrt{x-1}-x\right)=0\)
\(\Leftrightarrow\dfrac{x}{2\sqrt{y-1}+y}\left(4y-4-y^2\right)+\dfrac{2y}{2\sqrt{x-1}+x}\left(4x-4-x^2\right)=0\)
\(\Leftrightarrow\dfrac{x}{2\sqrt{y-1}+y}\left(y-2\right)^2+\dfrac{2y}{2\sqrt{x-1}+x}\left(x-2\right)^2=0\) (1)
Dễ thấy \(\dfrac{x}{2\sqrt{y-1}+y}>0;\dfrac{y}{2\sqrt{x-1}+x}>0\forall x;y\ge1\)
nên (1) \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-2=0\end{matrix}\right.\Leftrightarrow x=y=2\)
Vậy x = y = 2 là nghiệm phương trình
Chọn hệ trục Oxy như hình vẽ , chiều dương hướng xuống
Phương trình tọa độ
x = v0.t = 36t (1)
y = \(\dfrac{1}{2}gt^2=5t^2\) (2)
Từ (1) và (2) ta có phương trình quỹ đạo của vật là
(P) : \(y=\dfrac{5}{1296}.x^2\) (*)
Nhận thấy đường thẳng dốc (d) đi qua gốc O nên phương trình
(d) có dạng y = ax
mà \(a=\tan\alpha=\tan30^{\text{o}}=\dfrac{1}{\sqrt{3}}\)
Vậy (d) : \(y=\dfrac{x}{\sqrt{3}}\) (**)
Phương trình hoành độ giao điểm của (d) và (P) :
\(\dfrac{5x^2}{1296}=\dfrac{x}{\sqrt{3}}\) \(\Leftrightarrow x=\dfrac{1296}{5\sqrt{3}}\) (m)
Viên đạn rơi xuống sườn dốc cách dốc khoảng cách
\(x_1=\dfrac{x}{\cos\alpha}=\dfrac{x}{\cos30^{\text{o}}}=172,8\left(m\right)\)