Xyz OLM

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Xyz OLM
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có (a3 + b3) + c3 - 3abc = 0

<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)

Áp dụng (1) cho bài toán ta được 

(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0

<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0

<=> \(\left[{}\begin{matrix}6x-9=0\\\left(x-2\right)^2+\left(x-2\right)^2+\left(2x-4\right)^2=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\6.\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)

<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)

Áp dụng (1) cho bài toán ta được 

(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0

<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0

<=> 

<=> 

ĐKXĐ : \(x\ne\left\{2;3;4;5;6\right\}\)

\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{4}{\left(x+2\right).\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right).\left(x+6\right)=32\)

\(\Leftrightarrow x^2+8x-20=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(\text{loại}\right)\\x=-10\end{matrix}\right.\Leftrightarrow x=-10\)

Vậy tập nghiệm phương trình S = {10}

a) x - 5 = 7 - x 

<=> 2x = 12

<=> x = 6

Vậy tập nghiệm phương trình S = {6}

b) 3x - 15 = 2x(x - 5)

<=> 3(x - 5) = 2x(x - 5)

<=> (2x - 3)(x - 5) = 0

<=> \(\left[{}\begin{matrix}2x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=5\end{matrix}\right.\)

Tập nghiệm phương trình \(S=\left\{\dfrac{3}{2};5\right\}\)

Ta có : 

 P = \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2ac}+\dfrac{1}{2ab}-\dfrac{1}{2bc}}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2abc}\left(b+c-a\right)}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) (do a = b + c) 

=> P là số hữu tỉ với a,b,c \(\ne0\)

 P = 

 (do a = b + c) 

=> P là số hữu tỉ với a,b,c 

Vì ab = cd nên \(\dfrac{a}{c}=\dfrac{d}{b}\)

Đặt \(\dfrac{a}{c}=\dfrac{d}{b}=k\) (k > 0)

=> a = ck ; d = bk

Khi đó P = an + bn + cn + dn

= (ck)n + bn + cn + (bk)n

= cn.kn + cn + bn + bn.kn

= cn(kn + 1) + bn(kn + 1)

= (cn + bn).(kn + 1) 

Dễ thấy cn + bn > 1 ; kn + 1 > 1

=> P là hợp số 

b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)

Để Q đạt max 

thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0 

lại có \(x\inℤ\) 

nên 12 - x = 1 

<=> x = 11 

Khi đó Q = 17

Vậy Qmax = 5 khi x = 11 

A A B C H D I

a) Vì tam giác ABC vuông tại A

Áp dụng định lý Pytago :

AB2 + AC2 = BC2

<=> 62 + 82 = BC2

<=> BC = 10

BD tia phân giác góc B nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)(1)

mà AD + DC = AC = 8 (2) 

Từ (1)(2) ta tìm được AD = 3 ; DC = 5

=> P = AD.DC = 3.5 = 15 

b) Mà \(BD\cap AH=\left\{I\right\}\)

\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)(3)

Xét tam giác ABH và tam giác ABC có

\(\widehat{ABC}\) chung ; \(\widehat{AHB}=\widehat{BAC}=90^{\text{o}}\) 

nên \(\Delta CBA\sim\Delta ABH\)

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)( kết hợp (1);(3))

c) Tương tự dễ thấy

\(\Delta BIH\sim\Delta BDA\) (g-g)

=> \(\widehat{BDA}=\widehat{BIH}\)

lại có \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh)

nên \(\widehat{BDA}=\widehat{AID}\) => Tam giác AID cân tại A

Gọi số cần tìm là x (9 < x < 100 ; \(x\inℕ^∗\))

Vì x lẻ và \(x⋮5\) nên chữ số hàng đơn vị là 5 

Lại có hiệu của x và chữ số hàng chục là 86

=> Chữ số hàng chục có dạng: x - 86

=> Số cần tìm có dạng \(\overline{\left(x-86\right)5}\)  

Ta có phương trình \(\overline{\left(x-86\right)5}-\left(x-86\right)=86\)

<=> 10(x - 86) + 5 - x + 86 = 86

<=> 9x = 855

<=> x = 95 (tm) 

Vậy số cần tìm là 95 

\(C>0\Leftrightarrow\dfrac{-2}{3x+2}>0\)

\(\Leftrightarrow3x+2< 0\)

\(\Leftrightarrow x< -\dfrac{2}{3}\)(tm)

Vậy \(x< -\dfrac{2}{3}\)

b) Với \(x\inℤ\) 

Ta có  : \(C\inℤ\Leftrightarrow-2⋮3x+2\)

\(\Leftrightarrow3x+2\inƯ\left(-2\right)\)

\(\Leftrightarrow3x+2\in\left\{1;2;-1;-2\right\}\)

Lập bảng 

3x + 2 1 2 -2 -1
x   \(-\dfrac{1}{3}\left(\text{loại}\right)\) 0(tm) \(-\dfrac{4}{3}\left(\text{loại}\right)\) -1(tm)

Vậy \(x\in\left\{0;-1\right\}\)

Ta có  : 

Lập bảng 

3x + 2 1 2 -2 -1
x   0(tm) -1(tm)

Vậy