Xyz OLM

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Xyz OLM
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

 

Thời gian đi không tính nghỉ là 

8 giờ 15 phút - 30 phút = 7 giờ 45 phút = \(\dfrac{31}{4}\) giờ

Độ dài quãng đường AB 

\(S_{AB}=40.\dfrac{31}{4}:2=155\) (km) 

Parabol qua A(4;-3) và đỉnh I(1;5) ta có : 

-3 = 16a - 4b + c

5 = a - b + c

\(-\dfrac{\left(-b\right)}{2a}=1\Leftrightarrow b-2a=0\) 

Giải hệ trên ta có  : \(a=-\dfrac{8}{9};b=-\dfrac{16}{9};c=\dfrac{37}{9}\)

 

Gọi số cần lập là x = \(\overline{abc}\) (a;b;c có nghĩa) 

Do x chẵn và 2 chữ số 1;3 đứng cạnh nhau nên 

=> a có 2 cách chọn ; b có 1 cách chọn 

mà \(a\ne b\ne c\) ; x chẵn nên c có 3 cách chọn

Áp dụng quy tắc nhân 

Có : 2.1.3 = 6 số thỏa mãn yêu cầu 

a) Vector chỉ phương \(\overrightarrow{u}\left(4;-2\right)\)

=> Vector pháp tuyến \(\overrightarrow{n}\left(2;4\right)\)

Phương trình (d) : 2(x + 1) + 4(y - 1) = 0 

<=> x + 2y - 1 = 0

b) \(d\left(M,\Delta\right)=\dfrac{\left|3.\left(-1\right)-4.1-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)

c) Do đường thẳng \(d_1\perp\Delta\)

nên \(\overrightarrow{u}\left(4;-2\right)\) là vector pháp tuyến của (d1)

Phương trình tổng quát : 

4(x + 1) - 2(y - 2) = 0

<=> 2x - y + 4 = 0 

a) ĐKXĐ : \(x^2-16\ne0\Leftrightarrow x\ne\pm4\)

TXĐ hàm số D = \(ℝ\backslash\left\{4;-4\right\}\)

b) ĐKXĐ : \(\left\{{}\begin{matrix}2x-3\ge0\\4-x\le0\end{matrix}\right.\Leftrightarrow\dfrac{3}{2}\le x\le4\)

TXĐ hàm số D = \(\left[\dfrac{3}{2};4\right]\)

Mình sửa lại đề : x2 - 5x + m = 0 (1)

Với m = 6 

Phương trình trở thành : 

x2 - 5x + 6 = 0 

\(\Delta=\left(-5\right)^2-4.1.6=1>0\)

=> Phương trình 2 nghiệm phân biệt 

\(x_1=\dfrac{5+\sqrt{1}}{2}=3;x_2=\dfrac{5-\sqrt{1}}{2}=2\)

Tập nghiệm S = {3;2} 

b) Với m = 0 có (1) <=>  x2 - 5x = 0  

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\)(loại)

Với \(m\ne0\) : có \(\Delta=25-4m\)

Phương trình có nghiệm khi \(\Delta\ge0\Leftrightarrow m\le\dfrac{25}{4}\)

Hệ thức Viete : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Khi đó |x1 - x2| = 3

<=> (x1 - x2)2 = 9

<=> (x1 + x2)2 - 4x1x2 = 9

<=> 52 - 4m = 9

<=> m = 4 (tm)

Vậy m = 4 thì thóa mãn yêu cầu đề

Chất oxi hóa : KMnO4

Chất khử : FeSO4

Quá trình oxi hóa : 2.Fe+2 ---> 2.Fe+3 + 2e  x 5

Quá trình khử : Mn+7 + 5e --> Mn+2       x 2

 2KMnO4 + 10FeSO4 + 8H2SO4  5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O.

 

 

 

Chất oxi hóa : HNO3 

Chất khử : Fe

Quá trình oxi hóa : Fe ---> Fe+3 + 3e   x 1

Quá trình khử        N+5 + 3e ---> N+2   x 1 

Fe + 4HNO3 ----> Fe(NO3)3 + NO + 2H2O

Chọn mốc thế năng ở mặt đất 

Ta có : \(\left\{{}\begin{matrix}W=W_đ+W_t\\W_đ=1,5.W_t\end{matrix}\right.\) \(\Leftrightarrow W=2,5W_t=2,5.m.g.z\)

\(\Leftrightarrow m=\dfrac{W}{2,5.g.z}=\dfrac{37,5}{2,5.10.3}=0,5\left(kg\right)\)

tương tự \(W=\dfrac{5}{3}W_đ=\dfrac{5}{3}.\dfrac{1}{2}.m.v_0^2\)

Vận tốc vật là : \(v_0=\pm\sqrt{\dfrac{W}{\dfrac{5}{6}m}}=\pm3\sqrt{10}\)(m/s)