

Xyz OLM
Giới thiệu về bản thân



































ĐKXĐ : \(0\le x\le1\)
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a;b\ge0\right)\)
Khi đó ta được a2 + b2 = 1 (1)
Lại có phương trình ban đầu trở thành
\(\dfrac{2a^3}{a+b}+ab=1\) (2)
Từ (1) ; (2) ta được \(\dfrac{2a^3}{a+b}+ab=a^2+b^2\)
\(\Leftrightarrow2a^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^3=b^3\Leftrightarrow a=b\)
Khi đó \(\sqrt{x}=\sqrt{1-x}\Leftrightarrow x=1-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)
a) Ta có : \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)
=> Phương trình luôn có 2 nghiệm phân biệt
b) Hệ thức Viete :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)
Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)
\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)
Do (m - 1)2 + 3 \(\ge3\forall m\)
nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)
Vậy Mmin = -2 <=> m = 1
a)Có: \(\Delta=\left(-m\right)^2-4\left(m-5\right)=m^2-4m+20=\left(m-2\right)^2+16>0\)
=> Phương trình (1) có 2 nghiệm phân biệt \(\forall m\)
b) Áp dụng hệ thức Viete :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-5\end{matrix}\right.\)
Kết hợp giả thiết : \(x_1+2x_2=1\)
ta được \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1+2x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=1-m\\x_1=2m-1\end{matrix}\right.\)
Khi đó \(x_1x_2=m-5\)
\(\Leftrightarrow\left(1-m\right).\left(2m-1\right)=m-5\)
\(\Leftrightarrow2m^2-2m-4=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
Vậy m \(\in\left\{-1;2\right\}\)
Từ 2x - y - 2 = 0
ta được y = 2x - 2
Thế vào phương trình dưới ta được
3x2 - x(2x - 2) - 8 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2)(x + 4) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với x = 2 được y = 2
Với x = -4 được y = - 10
Vậy (x;y) = (2;2) ; (-4 ; -10)
ĐKXĐ : \(x\ge-3;x^2+9x+19\ge0\)
Phương trình tương đương
\(2\sqrt{x+3}=\sqrt{x^2+9x+19}-\left(x+4\right)\)
\(\Leftrightarrow2\sqrt{x+3}=\dfrac{x+3}{\sqrt{x^2+9x+19}+x+4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\dfrac{\sqrt{x+3}}{\sqrt{x^2+9x+19}+x+4}=2\left(1\right)\end{matrix}\right.\)
Giải (1) ta có : \(2\sqrt{x^2+9x+9}=-2x-8+\sqrt{x+3}\)
Đặt t = \(\sqrt{x+3}\) có VP = f(t) = -2t2 + t - 2 \(\le-\dfrac{15}{8}\)< 0 (2)
Dấu "=" khi \(x=\dfrac{1}{4}\)
Lại có VP \(\ge0\) (3)
Từ (2) (3) được (1) vô nghiệm
=> Nghiệm phương trình ban đầu là nghiệm của x + 3 = 0
<=> x = -3 (TM)
Tập nghiệm S = {-3}
Chọn mốc thế năng ở mặt đất :
Cơ năng sau khi ném vật : \(W=\dfrac{1}{2}mv^2+mgh=\dfrac{1}{2}m.\left(20\right)^2+m.10.10=300m\) (J)
lại có \(W_đ=3W_t\Leftrightarrow\left\{{}\begin{matrix}W=4W_t\left(1\right)\\W=\dfrac{4}{3}W_đ\left(2\right)\end{matrix}\right.\)
Theo (1) ta có 300m = 4mgh1
<=> h1 = \(\dfrac{300m}{4mg}=75\left(m\right)\)
Theo (2) ta có : \(300m=\dfrac{4}{3}.\dfrac{1}{2}mv_1^2\)
\(\Leftrightarrow v_1=\sqrt{\dfrac{300m}{\dfrac{4}{3}.\dfrac{1}{2}m}}=15\sqrt{2}\left(m/s\right)\)
Vật chạm đất thì \(W=W_đ\)
\(\Rightarrow300m=\dfrac{1}{2}m.v_{max}^2\)
\(\Rightarrow v_{max}=10\sqrt{6}\) (m/s)
Phương trình hoành độ giao điểm
x2 = -2x + m - 1
<=> x2 + 2x + 1 - m = 0 (1)
(p) cắt (d) 2 điểm phân biệt <=> \(\Delta=4-4\left(1-m\right)=4m>0\Leftrightarrow m>0\)
Hệ thức viete cho (1) : \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=1-m\end{matrix}\right.\)
Do A(x1 ; y1) và B(x2 ; y2) \(\in d\)
nên y1 = -2x1 + m - 1
y2 = -2x2 + m - 1
khi đó y1 + y2 = 2m - 2 - 2(x1 + x2) = 2m + 2
Ta có (y1 + y2)2 = 110 - x12 - x22
<=> (2m + 2)2 = 110 - (x12 + x22)
<=> (2m + 2)2 = 110 - (x1 + x2)2 + 2x1x2
<=> (2m + 2)2 = 108 - 2m
<=> 4m2 + 10m - 104 = 0
<=> \(\left[{}\begin{matrix}m=4\\m=-\dfrac{13}{2}\left(\text{loại}\right)\end{matrix}\right.\)
Vậy m = 4
a) Phương trình hoành độ giao điểm :
x2 = 2x + m2
<=> x2 - 2x - m2 = 0 (1)
Có \(\Delta=\left(-2\right)^2-4.1.\left(-m^2\right)=4m^2+4>0\forall m\inℝ\)
=> Phương trình (1) luôn có 2 nghiệm phân biệt
=> ĐPCM
b) Áp dụng hệ thức Viete cho phương trình (1)
\(x_1+x_2=2;x_1x_2=-m^2\)
Khi đó (x1 + 1)(x2 + 1) = -3
<=> x1x2 + x1 + x2 + 4 = 0
<=> -m2 + 6 = 0
<=> \(m=\pm\sqrt{6}\)
P = 10m = 10.400 = 4000(N)
Công sinh ra để nâng vật :
A = F.s = P.s = 4000.20 = 80000(J)
b) Công suất của máy
\(P=\dfrac{A}{t}=\dfrac{80000}{10}=8000\left(W\right)\)
c) Hiệu suất : \(H=\dfrac{P}{P_1}.100\%0=\dfrac{8000}{20000}.100\%=40\%\)
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)