Xyz OLM

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Xyz OLM
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

P = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-2\sqrt{x}.\left(\sqrt{x}-1\right)+x-3}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}=\dfrac{3}{\sqrt{x}+1}\)

2. Có : \(\dfrac{1}{P}=\dfrac{4}{3}\Leftrightarrow P=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+1}=\dfrac{3}{4}\Leftrightarrow\sqrt{x}+1=4\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\)

a) x2 + 2x + m - 1 = 0 (1)

Với m = 2 ta có (1) trở thành

x2 + 2x + 1 = 0

Có \(\Delta=2^2-4.1.1=0\) nên phương trình nghiệm kép 

\(x_1=x_2=-1\)

b) (1) 2 nghiệm phân biệt khi \(\Delta=2^2-4.\left(m-1\right)=8-4m>0\Leftrightarrow m< 2\)

Áp dụng hệ thức Viete cho (1) ta có 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Khi đó \(x_1^3+x_2^3-6x_1x_2=4.\left(m-m^2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2.\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)

\(\Leftrightarrow\left(-2\right)^3-3.\left(-2\right).\left(m-1\right)-6.\left(m-1\right)=4.\left(m-m^2\right)\)

\(\Leftrightarrow4m^2-4m-8=0\Leftrightarrow\left(m-2\right).\left(4m+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(\text{loại}\right)\\m=-1\left(tm\right)\end{matrix}\right.\)

Vậy m = -1 thì thỏa mãn ycbt

a) Với m = 0 phương trình (1) trở thành :

x2 + 2x - 3 = 0

Dễ thấy phương trình có dạng a + b + c = 0

nên (1) có 2 nghiệm \(x_1=1;x_2=-3\)

b) Phương trình (1) có nghiệm khi : 

\(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+3=-2m+4\ge0\)

\(\Leftrightarrow m\le2\)

c) Áp dụng hệ thức Viete cho (1) ta có : 

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3\end{matrix}\right.\)

Khi đó \(F=x_1^2+x_2^2+x_1+x_2=\left(x_1+x_2\right)^2+x_1+x_2-2x_1x_2\)

\(=\left(2m-2\right)^2+2m-2-2.\left(m^2-3\right)\)

\(=2m^2-6m+8=\dfrac{4m^2-12m+16}{2}=\dfrac{\left(2m-3\right)^2+7}{2}\ge\dfrac{7}{2}\)

=> \(F_{min}=\dfrac{7}{2}\)

Dấu "=" xảy ra <=> 2m - 3 = 0 

\(\Leftrightarrow m=\dfrac{3}{2}\)(tm)

 

Gọi thời gian  tổ A,B hoàn thành công việc một mình là x,y 

ĐK : x > 8 ; y > 8

1 giờ tổ A làm \(\dfrac{1}{x}\) (việc)

1 giờ tổ B làm \(\dfrac{1}{y}\) (việc) 

1 giờ cả hai tổ làm được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\) (việc) (1) 

Khi làm riêng , tổ A xong trước tổ B 12 giờ 

=> 1 giờ tổ A làm nhiều hơn tổ B 

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{12}\) (việc) (2)

Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=\dfrac{5}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=9,6\\y=48\end{matrix}\right.\)

Vậy thời gian tổ A,B lần lượt xong việc là 9,6 giờ ; 48 giờ

\(\left\{{}\begin{matrix}\dfrac{3x}{4}+\dfrac{7y}{3}=41\\\dfrac{5x}{2}-\dfrac{3y}{5}=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+28y=492\\25x-6y=110\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}225x+700y=12300\\225x-54y=990\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}700y+54y=12300-990\\9x+28y=492\end{matrix}\right.\)

\(\)\(\Leftrightarrow\left\{{}\begin{matrix}y=15\\x=8\end{matrix}\right.\)

Vậy (x;y) = (8;15) 

ĐKXĐ : \(x\ge-2\)

\(\sqrt{1+\left(x+2\right).\sqrt{1+\left(x+3\right).\left(x+5\right)}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\sqrt{x^2+8x+16}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\left(x+4\right)}=2023x+1\) (Do \(x\ge-2\Rightarrow x+4>0\))

\(\Leftrightarrow\sqrt{x^2+6x+9}=2023x+1\)

\(\Leftrightarrow x+3=2023x+1\) (Do \(x\ge-2\Rightarrow x+3>0\)

\(\Leftrightarrow x=\dfrac{1}{1011}\)(tm) 

Vậy tập nghiệm \(S=\left\{\dfrac{1}{1011}\right\}\)

 

P = x3 - y2 + x + x2y - 2x2 + 3y - xy + 2021

= x3 - y2 + x + x2y - (x + y)x2 + 3y - xy + 2021 (do x + y = 2)

= x3 - y2 + x + x2y - x3 - x2y + 3y - xy + 2021

= -y2 + x + 3y - xy + 2021

= -y2 +  2y - xy + (x + y) + 2021

= -y2 + (x + y).y - xy + 2 + 2021 (Do x + y = 2)

= -y2 + xy + y2 - xy + 2023

= 2023 

Vậy P = 2023

1.Then walk along the street for 3 minutes

2.You will see a supermarket at the end of the street

3 Turn right and you will see a bookshop on the left 

4. My house is next to the bookshop

5 It is behind a white fence

ĐKXĐ : \(x\ne2\)

Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2 

Áp dụng vào bài toán ta có:

 x4 + 3 = (x4 - 16) + 19

= [(x2)2 - 42] + 19

= (x2 - 4)(x2 + 4) + 19

= (x - 2)(x + 2)(x2 + 4) + 19

Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)

\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)

Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{3;1;21;-17\right\}\)

Gọi số cần tìm : \(\overline{abc}\) (a,b,c là chữ số từ 1 đến 6)

Các bộ số (a,b,c) thỏa mãn (1,2,3) ; (4,5,6) ; (2,3,4) ; (1,5;6) ; (1;3;5) ; (1;2;6)  

Các số tạo được thỏa mãn yêu cầu : \(A^3_3.6=36\) số