Trương Duy Hiệp

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Trương Duy Hiệp
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Gọi \(O\) là giao điểm của hai đường chéo \(A C\) và \(B D\).

Theo tính chất hai đường chéo của hình chữ nhật, ta co \(OA=OB=OC=OD\)

Vậy bốn điểm \(A\)\(B\)\(C\)\(D\) cùng thuộc \(\left(\right. O ; \frac{1}{2} A C \left.\right)\).

Áp dụng định lí Pythagore vào tam giác vuông \(A B C\), ta có: \(AC^2=AB^2+BC^2\)

Do đó \(R = \frac{1}{2} A C = \frac{1}{2} \sqrt{a^{2} + b^{2}}\).

Tam giác \(A B C\) có hai đường cao \(B B^{'}\)  \(C C^{'}\)
suy ra OB=OC=OB'=OC' (dường cao ứng với cạnh huyền)

Dó đó bốn điểm \(B\), \(C^{'}\), \(B^{'}\), \(C\) cùng nằm trên một đường tròn.

Tứ giác \(A B C D\) có \(\hat{B} = \hat{D} = 9 0^{\circ}\) nên \(O A = O B = O C = O D\) (đường cao ứng với cạnh huyền).

Suy ra bốn điểm \(A\)\(B\)\(C\)\(D\) cùng nằm trên một đường tròn tâm \(O\), đường kính \(A C\).