Trương Duy Hiệp

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Trương Duy Hiệp
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Tam giác \(O A C\) có ba cạnh bằng nhau \(\left(\right. A C = O A = O C \left.\right)\) nên là tam giác đều

Suy ra \(\hat{A} = \hat{C_{1}} = \hat{O_{1}} = 6 0^{\circ}\).

Ta có: \(O A C\) có \(O B = O C\) nên cân tại \(O\) suy ra \(\hat{B} = \hat{C_{2}}\);

\(\hat{O_{1}}\) là góc ngoài của \(\Delta O B C\).

Do đó \(\hat{O_{1}} = \hat{B} + \hat{C_{2}} = 2 \hat{B} = 2 \hat{C_{2}}\)

\(\hat{B} = \hat{C_{2}} = \frac{1}{2} \hat{O_{1}} = 3 0^{\circ}\)

\(\hat{A C B} = \hat{C_{1}} + \hat{C_{2}} = 9 0^{\circ}\)

Vậy \(\hat{A} = 6 0^{\circ} ; \hat{B} = 3 0^{\circ} ; \hat{C} = 9 0^{\circ}\).

\(\Delta C A B\) có trung tuyến \(C O\) bằng nửa cạnh đối xứng \(A B\) nên vuông tại \(C\) với \(\hat{A C B} = 9 0^{\circ}\)

Suy ra \(\hat{A} = 6 0^{\circ}\) và \(\hat{B} = 3 0^{\circ}\)

Vậy \(\Delta A B C\) có \(\hat{C} = 9 0^{\circ} ; \hat{A} = 6 0^{\circ} ; \hat{B} = 3 0^{\circ}\).

a) Từ giả thiết, ta có \(\frac{O A^{'}}{O A} = \frac{r}{R^{'}}\);

\(\frac{O B^{'}}{O B} = \frac{r}{R^{'}}\).

Suy ra \(\frac{O A^{'}}{O A} = \frac{O B^{'}}{O B}\).

b) Vì \(\frac{O A^{'}}{O A} = \frac{O B^{'}}{O B}\) nên theo hệ quả của định lí Thalès ta có:

\(A B\) // \(A^{'} B^{'}\).

Ta có \(A B C D\) là hình chữ nhật nên \(O A = O B = O C = O D\), suy ra các điểm \(A\)\(B\)\(C\)\(D\) nằm trên một đường tròn tâm \(O\).

Tam giác \(A B C\) vuông tại \(B\) có: \(A C = \sqrt{A B^{2} + B C^{2}} = \sqrt{6^{2} + 9^{2}} = \sqrt{117}\).

Vậy bán kính \(R = \frac{A C}{2} = \frac{\sqrt{117}}{2}\).

a) Hai đường tròn \(\left(\right. A ; 6\) cm\(\left.\right)\) và \(\left(\right. B ; 4\) cm\(\left.\right)\) cắt nhau tại \(C\) và \(D\) nên \(A C = A D = 6\) cm, \(B C = B D = 4\) cm.

b) \(A B = 8\) cm, \(B C = B D = B I = 4\) cm.

Suy ra \(A I = A B - I B = 8 - 4 = 4\) cm.

Điểm \(I\) là trung điểm của đoạn thẳng \(A B\).

c) Ta có: \(A K = A C = 6\) cm nên \(I K = A K - A I = 6 - 4 = 2\) cm.

a) Do \(O\) là tâm đối xứng của \(\left(\right. O \left.\right)\) nên điểm \(N\) đối xứng với điểm \(M\) qua tâm \(O\) phải vừa thuộc \(O M\), vừa thuộc \(\left(\right. O \left.\right)\).

Vậy \(N\) là giao điểm của đường thẳng \(O M\) với \(\left(\right. O \left.\right)\).

b) Do \(A B\) là trục đối xứng của \(\left(\right. O \left.\right)\) nên điểm \(P\) đối xứng với điểm \(M\) qua \(A B\) phải vừa thuộc \(\left(\right. O \left.\right)\), vừa thuộc đường thẳng vuông góc hạ từ \(M\) xuống \(A B\).

Vậy \(P\) là giao điểm của \(\left(\right. O \left.\right)\) với đường thẳng đi qua \(M\) và vuông góc với \(A B\).

a) Điểm \(B\) cố định. Điểm \(A\) cách \(B\) một khoảng là \(4\) cm nên \(A\) nằm trên đường tròn \(\left(\right. B ; 4\) cm\(\left.\right)\).

b) Gọi \(O\) là trung điểm của \(B C\) thì \(O\) là một điểm cố định.

Ta có \(O M = \frac{1}{2} A B = 2\) cm.

Điểm \(M\) cách điểm \(O\) một khoảng \(2\) cm nên \(M\) nằm trên đường tròn \(\left(\right. O ; 2\) cm\(\left.\right)\).

a) Ta có \(\Delta O A B\) cân tại \(O\) vì \(O A = O B = R\).

Mà \(M\) là trung điểm của \(A B\) nên \(O M\) là đường trung tuyến của tam giác \(O A B\).

Khi đó \(O M\) cũng là đường trung trực của đoạn thẳng \(A B\).

b) Khoảng cách từ điểm \(O\) đến đường thẳng \(A B\) chính là đoạn thẳng \(O M\).

\(M\) là trung điểm của \(A B\) nên \(A M = \frac{A B}{2} = 4\) cm. 

Xét \(\Delta O A M\) vuông tại \(M\), có \(O A^{2} = A M^{2} + O M^{2}\) (định lí Pythagore).

Suy ra \(O M = \sqrt{O A^{2} - A M^{2}} = \sqrt{5^{2} - 4^{2}} = 3\) cm.

b) Đường tròn \(\left(\right. O ; 2\) cm\(\left.\right)\) và \(\left(\right. A ; 2\) cm\(\left.\right)\) cắt nhau tại \(C\)\(D\), điểm \(A\) nằm trên đường tròn tâm \(O\) nên:

\(O C = O D = 2\) cm, \(A C = A D = 2\) cm.

Suy ra \(O C = C A = 2\) cm.

Do đó đường tròn \(\left(\right. C ; 2\) cm\(\left.\right)\) đi qua hai điểm \(O\) và \(A\).

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.

Xét tứ giác \(M N P Q\), ta có: \(M Q\) // \(N P\) và \(M N\) // \(P Q\) suy ra \(M N P Q\) là hình bình hành.

Kéo dài \(A D\) và \(B C\) cắt nhau tại \(E\).

Ta có: \(\hat{C} + \hat{D} = 9 0^{\circ}\) suy ra \(\hat{E} = 9 0^{\circ}\).

Lại có:\(M N\) // \(E D\) và \(M Q\) // \(E C\) suy ra \(M N ⊥ M Q\)

Do đó \(M N P Q\) là hình chữ nhật suy ra \(M , N , P , Q\) nằm trên một đường tròn với tâm là giao điểm của hai đường chéo của hình chữ nhật, bán kính bằng nửa đường chéo.