Minh hieu

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Minh hieu
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

(X+2022)/5 - (X+2022)/3 = X/2 + 1011

(X+2022)/5 - (X+2022)/3 - (X+2022)/2 = 0

(X+2022) . (1/5 - 1/3 - 1/2) =0

(X+2022) . (-19/30) = 0

X+2022 = 0

X = 0-2022

X = -2022

(X+2022)/5 - (X+2022)/3 = X/2 + 1011

(X+2022)/5 - (X+2022)/3 - (X+2022)/2 = 0

(X+2022) . (1/5 - 1/3 - 1/2) =0

(X+2022) . (-19/30) = 0

X+2022 = 0

X = 0-2022

X = -2022

a) √10 = 3,4622

làm tròn kết quả 3,4622 đến chữ số thập phân thứ 2 = 3,46

b) ước lượng số dân với độ chính xác 500 = 7342000

a) 5,3.(4,7-1,7)-5,9

= 5,3.3-5,9

= 15,9-5,9

= 10

b) 10/15-5/15+7/15

= 12/15

= 4/5

a) cỡ giày 38

b) cỡ giày 36, 40 và 42

CBKHI

a) xét t/g BHK và t/g CHI có

góc K = góc I (=90\(\)độ)

góc BHK = góc CHI (đối đỉnh)

=> t/g BHK ~ t/g CHI ( góc - góc)

vì tam giác BHK ~ tam giác CHI nên góc KBH = góc ICH (tương ứng)

xét tam giác CIB và tam giác HIC:

góc IBC = góc ICH

góc BIC chung

=> Tam giác CIB ~ tam giác HIC (góc - góc)

ta có các cặp cạnh tỉ lệ :

\(\frac{CI}{IB}=\frac{HI}{IC}\) hay \(CI^2=IH\times IB\)

CBKHI

a) xét t/g BHK và t/g CHI có

góc K = góc I (=90\(\)độ)

góc BHK = góc CHI (đối đỉnh)

=> t/g BHK ~ t/g CHI ( góc - góc)

vì tam giác BHK ~ tam giác CHI nên góc KBH = góc ICH (tương ứng)

xét tam giác CIB và tam giác HIC:

góc IBC = góc ICH

góc BIC chung

=> Tam giác CIB ~ tam giác HIC (góc - góc)

ta có các cặp cạnh tỉ lệ :

\(\frac{CI}{IB}=\frac{HI}{IC}\) hay \(CI^2=IH\times IB\)

171021ABCH

gọi BH là y , HC là x :

ta có x+y=21 (cm) (1)

mặt khác : \(AH^2=10^2-y^2\) , \(AH^2=17^2-x^2\)

=> \(x^2-y^2=17^2-10^2=289-100=189\) (2)

từ (1) và (2) ta có x=15 y=9

vậy \(AH^2=17^2-15^2=64\)

AH=8 (cm)

vậy diện tích tam giác ABC là :

\(\frac{21\times8}{2}=84\left(\operatorname{cm^2}\right)\)

171021ABCH

gọi BH là y , HC là x :

ta có x+y=21 (cm) (1)

mặt khác : \(AH^2=10^2-y^2\) , \(AH^2=17^2-x^2\)

=> \(x^2-y^2=17^2-10^2=289-100=189\) (2)

từ (1) và (2) ta có x=15 y=9

vậy \(AH^2=17^2-15^2=64\)

AH=8 (cm)

vậy diện tích tam giác ABC là :

\(\frac{21\times8}{2}=84\left(\operatorname{cm^2}\right)\)

171021ABCH

gọi BH là y , HC là x :

ta có x+y=21 (cm) (1)

mặt khác : \(AH^2=10^2-y^2\) , \(AH^2=17^2-x^2\)

=> \(x^2-y^2=17^2-10^2=289-100=189\) (2)

từ (1) và (2) ta có x=15 y=9

vậy \(AH^2=17^2-15^2=64\)

AH=8 (cm)

vậy diện tích tam giác ABC là :

\(\frac{21\times8}{2}=84\left(\operatorname{cm^2}\right)\)