Huy Hoàng

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Huy Hoàng
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Nếu \(n\) lẻ thì \(n\) có dạng \(n = 2 k + 1\) với \(k \in \mathbb{N}\).

Do đó \(n^{3} = \left(\right. 2 k + 1 \left.\right)^{3} = 8 k^{3} + 12 k^{2} + 6 k + 1 = 2 \left(\right. 4 k^{3} + 6 k^{2} + 3 k \left.\right) + 1\).

Suy ra \(n^{3}\) lẻ.

Vậy với mọi số tự nhiên \(n\), nếu \(n\) lẻ thì \(n^{3}\) lẻ.