Lương Đức Khánh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lương Đức Khánh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Dear Tom,

I'm happy to hear that you’re going to join the Ok Om Bok Festival next week. Here, I have some advice for you on what to do and avoid doing at the festival.

First, you should dress properly, and don’t forget to wear comfortable shoes because you may walk a lot. Second, you should be quiet when the monks and the elders are talking. Last but not least, always show respect to the monks and the elders.

Also, I should remind you that you mustn’t litter on the ground or climb on the statues in the temple. Besides, you shouldn’t refuse young rice when the elders offer it to you. Anyway, I hope you will have a great time.

Best wishes,

Phương trình đã cho trở thành

\(\frac{4 x^{2} y^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} - 1 + \frac{x^{2}}{y^{2}} + \frac{y^{2}}{x^{2}} - 2 \geq 0\)

\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)

\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).

Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).