Cao Quang Thanh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Cao Quang Thanh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a. Các nhóm máu trong hệ nhóm máu ABO được xác định dựa vào kháng nguyên (A và B) trên bề mặt hồng cầu và kháng thể (α và β) trong huyết tương. Trong đó, α gây kết dính A và β gây kết dính B.

- Người 1: nhóm máu AB (có chứa A, B).

- Người 2: nhóm máu B (có chứa B).

- Người 3: nhóm máu A (có chứa A).

- Người 4: nhóm máu O (không có A, B).

b. Người thứ 4 (nhóm máu O) có thể truyền máu cho 3 người con lại.

Nhóm máu O không chứa kháng nguyên trong hồng cầu. Vì vậy khi truyền cho máu khác, không bị kháng thể trong huyết tương của máu nhận gây kết dính hồng cầu.

Xét \(\Delta A B C\) có \(A B = 10\) cm, \(A C = 17\) cm, \(B C = 21\) cm.

Gọi \(A H\) là đường cao của tam giác.

Vì \(B C\) là cạnh lớn nhất của tam giác nên \(\hat{B} , \hat{C} < 9 0^{\circ}\), do đó \(H\) nằm giữa \(B\) và \(C\).

Đặt \(H C = x , H B = y\), ta có : \(x + y = 21\) (1)

Mặt khác \(\left(A H\right)^{2} = 1 0^{2} - y^{2} , \left(A H\right)^{2} = 1 7^{2} - x^{2}\) nên \(x^{2} - y^{2} = 1 7^{2} - 1 0^{2} = 289 - 100 = 189\) (2)

Từ (1) và (2) suy ra \(x + y = 21\)\(x - y = 9\).

Do đó \(x = 15\)\(y = 6\).

Ta có \(\left(A H\right)^{2} = 1 0^{2} - 6^{2} = 64\) nên \(A H = 8\).

Vậy \(S_{A B C} = \frac{21.8}{2} = 84\) (cm\(^{2}\)).

.

Chiều cao của mỗi hình chóp tứ giác đều là:

     \(30 : 2 = 15\) (m).

Thể tích của lồng đèn quả trám là:

     \(V = 2. \left(\right. \frac{1}{3} . 20.20.15 \left.\right) = 4 000\) (cm\(^{3}\)).

a) Vì tam giác \(K B C\) vuông tại \(K\) suy ra \(\hat{K B H} = 9 0^{\circ}\)

Vì \(C I \bot B I\) (gt) suy ra \(\hat{C l H} = 9 0^{\circ}\)

Xét \(\triangle K B H\) và \(\triangle C H I\) có:

\(\hat{K B H} = \hat{C I H} = 9 0^{\circ}\);

\(\hat{B H K} = \hat{C H I}\) (đối đỉnh)

Suy ra \(\Delta B H K \sim \Delta C H I\) (g.g)

b) Ta có \(\Delta B H K \sim \Delta C H I\) suy ra \(\hat{H B K} = \hat{H C I}\) (hai góc tương ứng) 

Mà \(B H\) là tia phân giác của \(\hat{A B C}\) nên \(\hat{H B K} = \hat{H B C}\).

Do đó \(\hat{H B C} = \hat{H C I}\).

Xét \(\triangle C I B\) và \(\triangle H I C\) có:

\(\hat{C I B}\) chung;

\(\hat{I B C} = \hat{H C I}\) (cmt)

Vậy \(\Delta C I B \approx \Delta H I C\) (g.g) suy ra \(\frac{C I}{H I} = \frac{I B}{I C}\)

Hay \(\left(C I\right)^{2} = H I . I B\)

c) Xét \(\triangle A B C\) có \(B I \bot A C\)\(C K \bot A B\)\(B I \cap C K = \left{\right. H \left.\right}\)

Nên \(H\) là trực tâm \(\triangle A B C\) suy ra \(A H \bot B C\) tại \(D\).

Từ đó ta có \(\triangle B K C \sim \triangle H D C\) (g.g) nên \(\frac{C B}{C H} = \frac{C K}{C D}\)

Suy ra \(\frac{C B}{C K} = \frac{C H}{C D}\) nên \(\triangle B H C \sim \triangle K D C\) (c.g.c)

Khi đó \(\hat{H B C} = \hat{D K C}\) (hai góc tương ứng)

Chứng minh tương tự \(\hat{H A C} = \hat{I K C}\)

Mà \(\hat{H A C} = \hat{H B C}\) (cùng phụ \(\hat{A C B}\) )

Suy ra \(\&\text{nbsp}; \hat{D K C} = \hat{I K C}\).

Vậy \(K C\) là tia phân giác của \(\hat{I K D}\).

Có \(19\) kết quả cho hành động trên.

Có \(8\) kết quả thuận lợi cho biến cố đã cho nên xác suất cho biến cố là: \(\frac{8}{19}\)


1)

b) Vì \(\left(\right. d_{3} \left.\right) : y = a x + b\) song song với \(\left(\right. d_{2} \left.\right) : y = x + 2\) nên \(a = 1 , b \neq 2\).

2) Gọi số sản phẩm mà tổ I làm được theo kế hoạch là \(x\).

Điều kiện: \(x \in \mathbb{N}^{*}\)\(x < 900\), đơn vị: sản phẩm.

Số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - x\) (sản phẩm).

Theo bài ra, do cải tiến kĩ thuật nên tổ một vượt mức \(20 \%\) và tổ hai vượt mức \(15 \%\) so với kế hoạch.

Số sản phẩm mà tổ I làm được theo thực tế là: \(x + x . \&\text{nbsp}; 20 \% = x + 0 , 2 x = 1 , 2 x\) (sản phẩm);

Số sản phẩm mà tổ II làm được theo thực tế là: \(900 - x + \left(\right. 900 - x \left.\right) . 15 \% = 1 035 - 1 , 15 x\) (sản phẩm).

Vì thực tế hai tổ đã sản xuất được \(1 055\) sản phẩm nên ta có phương trình: \(1 , 2 x + 1 035 - 1 , 15 x = 1 055\)

Giải phương trình tìm được \(x = 400\) (sản phẩm)

Khi đó, số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - 400 = 500\) (sản phẩm).

Vậy theo kế hoạch tổ I làm được \(400\) sản phẩm, tổ II làm được \(500\) sản phẩm  \(\)

a) \(2 x = 7 + x\)

\(2 x - x = 7\)

\(x = 7\).

Phương trình đã cho có nghiệm \(x = 7\).

b) \(\frac{x - 3}{5} + \frac{1 + 2 x}{3} = 6\)

\(\frac{3 \left(\right. x - 3 \left.\right)}{15} + \frac{5. \left(\right. 1 + 2 x \left.\right)}{15} = 6\)

\(3 x - 9 + 5 + 10 x = 90\)

\(13 x = 94\)

\(x = \frac{94}{13}\).

Phương trình đã cho có nghiệm \(x = \frac{94}{13}\).

a) Ở mỗi mặt, có \(4\) hình lập phương nhỏ được sơn một mặt (các hình được gạch sọc).

Ở sáu mặt có: \(4.6 \&\text{nbsp}; = 24\) (hình).

b) Ở mỗi cạnh, có \(2\) hình lập phương được sơn hai mặt (các hình ghi dấu "\(x\)").

Ở \(12\) cạnh có : \(2.12 = 24\) (hình)

Ta có: \(A B = A D + D B\)

Suy ra \(D B = A B - A D = 10 - 6 = 4\) cm

\(A M\) là trung tuyến của \(\Delta A B C\) suy ra \(M\) là trung điểm của \(B C\)

Suy ra \(B M = C M = \frac{1}{2} B C = 15\) cm.

 Xét \(\Delta A B M\) có \(M D\) là phân giác của góc \(A M B\) nên

\(\frac{A M}{B M} = \frac{A D}{D B}\)

\(\frac{A M}{B M} = \frac{6}{4} = \frac{3}{2}\)

Do đó \(A M = \frac{3}{2} . B M = \frac{3}{2} . 15 = 22 , 5\) (cm).

a) Xét \(\Delta A E H\) và \(\Delta A H B\) có:

\(\hat{B A H}\) chung và \(\hat{A E H} = \hat{A H B} = 9 0^{\circ}\)

Do đó \(\Delta A E H \sim \Delta A H B\) (g.g)

Suy ra \(\frac{A H}{A B} = \frac{A E}{A H}\) hay \(A H^{2} = A E . A B\) (1)

b) Chứng minh tương tự \(\Delta A H F \sim \Delta A C H\) (g.g) 

Suy ra \(\frac{A H}{A C} = \frac{A F}{A H}\) hay \(A H^{2} = A F . A C\) (2)

Từ (1) và (2) suy ra \(A E . A B = A F . A C\)

c) Ta có \(A E . A B = A F . A C\) nên \(\frac{A E}{A C} = \frac{A F}{A B}\).

Xét \(\Delta A E F\) và \(\Delta A C B\) có:

\(\hat{E A F}\) chung

\(\frac{A E}{A C} = \frac{A F}{A B}\) (cmt)

Do đó \(\Delta A E F \&\text{nbsp}; \sim \Delta A C B\) (c.g.c).

Suy ra \(\frac{E F}{C B} = \frac{P_{A E F}}{P_{A C B}} = \frac{20}{30} = \frac{2}{3}\) (tỉ số chu vi bằng tỉ số đồng dạng)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{S_{A E F}}{4} = \frac{S_{A C B}}{9} = \frac{S_{A C B} - S_{A E F}}{9 - 4} = \frac{25}{5} = 5\)

Suy ra

\(S_{A E F} = 5.4 = 20\) cm\(^{2}\);

\(S_{A C B} = 5.9 = 45\) cm\(^{2}\).

Vậy \(S_{A E F} = 20\) cm\(^{2}\) và \(S_{A C B} = 45\) cm\(^{2}\).