

Nguyễn Đăng Khoa
Giới thiệu về bản thân



































Có \(19\) kết quả cho hành động trên.
Có \(8\) kết quả thuận lợi cho biến cố đã cho nên xác suất cho biến cố là: \(\frac{8}{19}\).
a) Xét đường thẳng: \(\left(\right. d_{1} \left.\right) : y = - 3 x\).
Nếu \(x = 0\) thì \(y = 0\) suy ra \(\left(\right. d_{1} \left.\right)\) đi qua điểm có tọa độ \(\left(\right. 0 ; 0 \left.\right)\)
Nếu \(x = 1\) thì \(y = - 3\) suy ra \(\left(\right. d_{1} \left.\right)\) đi qua điểm có tọa độ \(\left(\right. 1 ; - 3 \left.\right)\)
Ta vẽ đồ thị:
b) Vì \(\left(\right. d_{3} \left.\right) : y = a x + b\) song song với \(\left(\right. d_{2} \left.\right) : y = x + 2\) nên \(a = 1 , b \neq 2\).
Khi đó đường thẳng \(\left(\right. d_{3} \left.\right)\) có dạng \(y = x + b\) với \(b \neq 2\).
Vì \(\left(\right. d_{3} \left.\right)\) đi qua điểm có tọa độ \(A \left(\right. - 1 ; 3 \left.\right)\) nên: \(3 = - 1 + b\) hay \(b = 3 + 1 = 4\) (thỏa mãn).
Vậy đường thẳng \(\left(\right. d_{3} \left.\right)\) là \(\left(\right. d_{3} \left.\right) : y = - x + 4\).
2) Gọi số sản phẩm mà tổ I làm được theo kế hoạch là \(x\).
Điều kiện: \(x \in \mathbb{N}^{*}\); \(x < 900\), đơn vị: sản phẩm.
Số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - x\) (sản phẩm).
Theo bài ra, do cải tiến kĩ thuật nên tổ một vượt mức \(20 \%\) và tổ hai vượt mức \(15 \%\) so với kế hoạch.
Số sản phẩm mà tổ I làm được theo thực tế là: \(x + x . \&\text{nbsp}; 20 \% = x + 0 , 2 x = 1 , 2 x\) (sản phẩm);
Số sản phẩm mà tổ II làm được theo thực tế là: \(900 - x + \left(\right. 900 - x \left.\right) . 15 \% = 1 035 - 1 , 15 x\) (sản phẩm).
Vì thực tế hai tổ đã sản xuất được \(1 055\) sản phẩm nên ta có phương trình: \(1 , 2 x + 1 035 - 1 , 15 x = 1 055\)
Giải phương trình tìm được \(x = 400\) (sản phẩm)
Khi đó, số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - 400 = 500\) (sản phẩm).
Vậy theo kế hoạch tổ I làm được \(400\) sản phẩm, tổ II làm được \(500\) sản phẩm.
Gọi \(B F\) cắt \(D C\) tại \(K\), \(B E\) cắt \(D C\) tại \(I\), và \(E F\) cắt \(A B\) tại \(G\).
\(\Delta F A B\) có \(D K\) // \(A B\) suy ra \(\frac{D K}{A B} = \frac{F D}{F A}\) (1)
\(\Delta F A G\) có \(D H\) // \(A G\) suy ra \(\frac{D H}{A G} = \frac{F D}{F A}\) (2)
Từ (1) và (2) suy ra \(\frac{D K}{A B} = \frac{D H}{A G}\) hay \(\frac{D K}{D H} = \frac{A B}{A G}\) (*)
Tương tự \(\Delta E I C\) có \(A B\) // \(I C\) suy ra \(\frac{I C}{A B} = \frac{E C}{E A}\) (3)
\(\Delta E H C\) có \(H C\) // \(A B\) suy ra \(\frac{H C}{A G} = \frac{E C}{E A}\) (4)
Từ (3) và (4) ta có \(\frac{I C}{A B} = \frac{H C}{A G}\) hay \(\frac{I C}{H C} = \frac{A B}{A G}\) (**)
Từ (*) và (**) ta có \(\frac{D K}{D H} = \frac{I C}{H C}\).
Mà \(D H = H C\) (gt) suy ra \(D K = I C\)
Mặt khác \(B D = B C\) (gt) nên \(\Delta B D C\) cân
Suy ra \(\hat{B D K} = \hat{B C I}\)
Vậy \(\Delta B D K = \Delta B C I\) (c.g.c)
Suy ra \(\hat{D B K} = \hat{C B I}\).
a) \(\Delta A I E \sim \Delta A C I\) (g.g) suy ra \(\frac{A I}{A C} = \frac{A E}{A I}\) hay \(A I^{2} = A E . A C\) (1)
Chứng minh tương tự:
\(\Delta A I K \sim \Delta A K B\) (g.g) suy ra \(\frac{A K}{A B} = \frac{A F}{A K}\) hay \(A K^{2} = A B . A F\) (2)
Mà \(\Delta A B E \sim \Delta A C F\) (g.g) suy ra \(\frac{A B}{A C} = \frac{A E}{A F}\) hay \(A B . A F = A C . A E\) (3)
Từ (1), (2) và (3) ta có \(A I^{2} = A K^{2}\) suy ra \(A I = A K\).
b) Vì \(\hat{A} = 60^{\circ}\) suy ra \(\hat{B_{1}} = 30^{\circ}\)
Trong tam giác \(A B E\) vuông tại \(E\) nên \(A E = \frac{1}{2} A B ,\)
Trong tam giác \(A F C\) vuông tại \(F\) có \(\hat{C_{1}} = 30^{\circ}\) suy ra \(A F = \frac{1}{2} A C\).
Do đó, \(\Delta A E F \sim \Delta A B C\) (c.g.c).
suy ra \(\frac{S_{A E F}}{S_{A B C}} = \left(\left(\right. \frac{A E}{A B} \left.\right)\right)^{2} = \frac{1}{4}\).
Vậy \(S_{A E F} = \frac{1}{4} . 120 = 30\) cm\(^{2}\)
a) \(\Delta A B E\) có \(A M\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{E B}{E D}\) (1)
\(\Delta A D E\) có \(A D\) // \(B K\) suy ra \(\frac{E B}{E D} = \frac{E K}{E A}\) (2)
Từ (1) và (2) ta có \(\frac{A E}{E G} = \frac{E K}{E A}\) nên \(A E^{2} = E K . E G\).
b) Từ \(\frac{1}{A E} = \frac{1}{A K} + \frac{1}{A G}\) suy ra \(\frac{A E}{A K} + \frac{A E}{A G} = 1\)
\(\Delta A D E\) có \(A D\) // \(B C\) suy ra \(\frac{A E}{E K} = \frac{E D}{E B}\)
\(\frac{A E}{A E + E K} = \frac{E D}{E D + E B}\)
\(\frac{A E}{A K} = \frac{E D}{D B}\) (3)
Tương tự \(\Delta A E B\) có \(A B\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{B E}{E D}\)
\(\frac{A E}{A E + E G} = \frac{B E}{B E + E D}\)
\(\frac{A E}{A G} = \frac{B E}{B D}\) (4)
Khi đó \(\frac{A E}{A K} + \frac{A E}{A G} = \frac{E D}{B D} + \frac{B E}{B D} = 1\).
c) Ta có \(\frac{B K}{K C} = \frac{A B}{C G}\) suy ra \(B K = \frac{K C . A B}{C G}\) và \(\frac{K C}{A D} = \frac{C G}{D G}\).
Suy ra \(D G = \frac{A D . C G}{K C}\)
Nhân theo vế ta được \(B K . D G = A B . A D\) không đổi.
Qua \(A\) vẽ đường thẳng song song với \(B C\) cắt \(B B^{'}\) tại \(D\) và cắt \(C C^{'}\) tại \(E\).
Khi đó
\(\Delta A M E\) có \(A E\) // \(A^{'} C\) suy ra \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C}\) (1)
\(\Delta A M D\) có \(A D\) // \(A^{'} B\) suy ra \(\frac{A M}{A^{'} M} = \frac{A D}{A^{'} B}\) (2)
Từ (1) và (2) ta có \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C} = \frac{A D}{A^{'} B} = \frac{A D + A E}{A^{'} C + A^{'} B} = \frac{D E}{B C}\) (*)
Chứng minh tương tự ta cũng có:
\(\Delta A B^{'} D\) có \(A D\) // \(B C\) suy ra \(\frac{A B^{'}}{B^{'} C} = \frac{A D}{B C}\) (3)
\(\Delta A C^{'} E\) có \(A E\) // \(B C\) suy ra \(\frac{A C^{'}}{C^{'} B} = \frac{A E}{B C}\) (4)
Từ (3) và (4) ta có \(\frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}} = \frac{A D}{B C} + \frac{A E}{B C} = \frac{D E}{B C}\) (**)
Từ (*) và (**) ta có \(\frac{A M}{A^{'} M} = \frac{D E}{B C} = \frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}}\) (đpcm)