Đoàn Gia Minh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Đoàn Gia Minh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

xác suất cho biến cố “thẻ rút ra là thử đánh số 3” là 3/10

ΔAME có \(� �\) // \(�^{'} �\) suy ra \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �}\) (1)

\(\Delta � � �\) có \(� �\) // \(�^{'} �\) suy ra \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �}\) (2)Qua \(�\) vẽ đường thẳng song song với \(� �\) cắt \(� �^{'}\) tại \(�\) và cắt \(� �^{'}\) tại \(�\).

Khi đó 

\(\Delta � � �\) có \(� �\) // \(�^{'} �\) suy ra \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �}\) (1)

\(\Delta � � �\) có \(� �\) // \(�^{'} �\) suy ra \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �}\) (2)

Từ (1) và (2) ta có \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �} = \frac{� �}{�^{'} �} = \frac{� � + � �}{�^{'} � + �^{'} �} = \frac{� �}{� �}\) (*)

Chứng minh tương tự ta cũng có:

\(\Delta � �^{'} �\) có \(� �\) // \(� �\) suy ra \(\frac{� �^{'}}{�^{'} �} = \frac{� �}{� �}\) (3)

\(\Delta � �^{'} �\) có \(� �\) // \(� �\) suy ra \(\frac{� �^{'}}{�^{'} �} = \frac{� �}{� �}\) (4)

Từ (3) và (4) ta có \(\frac{� �^{'}}{�^{'} �} + \frac{� �^{'}}{� �^{'}} = \frac{� �}{� �} + \frac{� �}{� �} = \frac{� �}{� �}\) (**)

Từ (*) và (**) ta có \(\frac{� �}{�^{'} �} = \frac{� �}{� �} = \frac{� �^{'}}{�^{'} �} + \frac{� �^{'}}{� �^{'}}\) (đpcm).

Từ (1) và (2) ta có \(\frac{� �}{�^{'} �} = \frac{� �}{�^{'} �} = \frac{� �}{�^{'} �} = \frac{� � + � �}{�^{'} � + �^{'} �} = \frac{� �}{� �}\)