Lương Khánh Chi

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lương Khánh Chi
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có \(D\) thuộc phân giác của \(\hat{A}\);

\(D H \bot A B\)\(D K \bot A C\) \(\Rightarrow D H = D K\) (tính chất tia phân giác của một góc).

Gọi \(G\) là trung điểm của \(B C\).

Xét \(\triangle B G D\) và \(\triangle C G D\), có

\(\hat{B G D} = \hat{C G D} = 9 0^{\circ}\) (\(D G\) là trung trực của \(B C\) ),

\(B G = C G\) (già thiết),

\(D G\) là cạnh chung.

Do đó \(\triangle B G D = \triangle C G D\) (hai cạnh góc vuông)

\(\Rightarrow B D = C D\) (hai cạnh tương ứng).

Xét \(\triangle B H D\) và \(\triangle C K D\), có

\(\hat{B H D} = \hat{C K D} = 9 0^{\circ}\) (giả thiết);

\(D H = D K\) (chứng minh trên);

\(B D = C D\) (chứng minh trên).

Do đó \(\triangle B H D = \triangle C K D\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow B H = C K\) (hai cạnh tương ứng).