

Lương Khánh Chi
Giới thiệu về bản thân



































Ta có \(D\) thuộc phân giác của \(\hat{A}\);
\(D H \bot A B\); \(D K \bot A C\) \(\Rightarrow D H = D K\) (tính chất tia phân giác của một góc).
Gọi \(G\) là trung điểm của \(B C\).
Xét \(\triangle B G D\) và \(\triangle C G D\), có
\(\hat{B G D} = \hat{C G D} = 9 0^{\circ}\) (\(D G\) là trung trực của \(B C\) ),
\(B G = C G\) (già thiết),
\(D G\) là cạnh chung.
Do đó \(\triangle B G D = \triangle C G D\) (hai cạnh góc vuông)
\(\Rightarrow B D = C D\) (hai cạnh tương ứng).
Xét \(\triangle B H D\) và \(\triangle C K D\), có
\(\hat{B H D} = \hat{C K D} = 9 0^{\circ}\) (giả thiết);
\(D H = D K\) (chứng minh trên);
\(B D = C D\) (chứng minh trên).
Do đó \(\triangle B H D = \triangle C K D\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow B H = C K\) (hai cạnh tương ứng).