

Vũ Minh Sao
Giới thiệu về bản thân



































a) \(\triangle A B C\) cân tại \(A\) nên \(\hat{A B C} = \hat{A C B}\).
Vì \(B Q\) và \(C P\) là đường phân giác của \(\hat{B} , \hat{C}\) nên \(\hat{B_{1}} = \hat{B_{2}} = \frac{\hat{A B C}}{2}\), \(\hat{C_{1}} = \hat{C_{2}} = \frac{\hat{A C B}}{2}\).
Do đó \(\hat{B_{1}} = \hat{B_{2}} = \hat{C_{1}} = \hat{C_{2}}\).
Suy ra \(\triangle O B C\) cân tại \(O\).
b) Vì \(O\) là giao điểm các đường phân giác \(C P\) và \(B Q\) trong \(\triangle A B C\) nên \(O\) là giao điểm ba đường phân giác trong \(\triangle A B C\).
Do đó, \(O\) cách đều ba cạnh \(A B , A C\) và \(B C\).
c) Ta có \(\triangle A B C\) cân tại \(A , A O\) là đường phân giác của góc \(A\) nên \(A O\) đồng thời là trung tuyến và đường cao của \(\triangle A B C\).
Vậy đường thẳng \(A O\) đi qua trung điểm của đoạn thẳng \(B C\) và vuông góc với nó.
d) Ta có \(\triangle P B C = \triangle Q C B\) (g.c.g)
\(\Rightarrow C P = B Q\) (hai cạnh tương ứng).
e) Ta có \(A P = A B - B P\), \(A Q = A C - C Q\) (1);
\(\triangle P B C = \triangle Q C B \Rightarrow B P = C Q\) (2).
Lại có \(A B = A C\) (tam giác \(A B C\) cân tại \(A\)) (3).
Từ (1), (2) và (3) suy ra \(A P = A Q\).
Vậy tam giác \(A P Q\) cân tại \(A\).
a) Xét \(\triangle O A D\) và \(\triangle O C B\), có
\(O A = O C\) (giả thiết);
\(\hat{O}\) chung;
\(O D = O B\) (giả thiết).
Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)
\(\Rightarrow A D = C B\) (hai cạnh tương ứng).
b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).
Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)
\(\Rightarrow \hat{O B C} = \hat{O D A}\); \(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)
Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)
\(\Rightarrow \hat{A B E} = \hat{C D E}\)
Xét \(\triangle A B E\) và \(\triangle C D E\) có
\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);
\(A B = C D\) (chứng minh trên);
\(\hat{A B E} = \hat{C D E}\) (chứng minh trên)
Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).
c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).
Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);
\(O E\) cạnh chung;
\(O A = O C\) (giả thiết).
Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)
\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)
\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).
a) Xét \(\triangle I O E\) và \(\triangle I O F\) có
\(\hat{E} = \hat{F} = 9 0^{\circ}\) (giả thiết);
\(O I\) cạnh chung;
\(\hat{E O I} = \hat{F O I}\) (\(O m\) là tia phân giác).
Vậy \(\triangle I O E = \triangle I O F\) (cạnh huyền - góc nhọn).
b) \(\triangle I O E = \triangle I O F\) (chứng minh trên)
\(\Rightarrow O E = O F\) (hai cạnh tương ứng).
Gọi \(H\) là giao điểm của \(O m\) và \(E F\).
Xét \(\triangle O H E\) và \(\triangle O H F\), có
\(O E = O F\) (chứng minh trên);
\(\hat{E O H} = \hat{F O H}\) (\(O m\) là tia phân giác);
\(O H\) chung.
Do đó \(\triangle O H E = \triangle O H F\) (c.g.c)
\(\Rightarrow \hat{O H E} = \hat{F H O}\) (hai góc tương ứng)
Mà \(\hat{O H E} + \hat{F H O} = 18 0^{\circ}\) nên \(\hat{O H E} = \hat{F H O} = 9 0^{\circ}\).
Vậy \(E F \bot O m\).
Vì \(\hat{B A C}\) và \(\hat{C A x}\) là hai góc kề bù mà \(\hat{B A C} = 12 0^{\circ}\) nên \(\hat{C A x} = 6 0^{\circ}\) (1)
Ta có \(A D\) là phân giác của \(\hat{B A C} \Rightarrow \hat{D A C} = \frac{1}{2} \hat{B A C} = 6 0^{\circ}\) (2)
Từ (1) và (2) suy ra \(A C\) là tia phân giác của \(\hat{D A x}\)
\(\Rightarrow I H = I E\) (tính chất tia phân giác của một góc) (3)
Vì \(D I\) là phân giác của \(\hat{A D C}\) nên \(I K = I E\) (tính chất tia phân giác của một góc) (4)
Từ (3) và \(\left(\right. 4 \left.\right)\) suy ra \(I H = I K\).
Ta có \(D\) thuộc phân giác của \(\hat{A}\);
\(D H \bot A B\); \(D K \bot A C\) \(\Rightarrow D H = D K\) (tính chất tia phân giác của một góc).
Gọi \(G\) là trung điểm của \(B C\).
Xét \(\triangle B G D\) và \(\triangle C G D\), có
\(\hat{B G D} = \hat{C G D} = 9 0^{\circ}\) (\(D G\) là trung trực của \(B C\) ),
\(B G = C G\) (già thiết),
\(D G\) là cạnh chung.
Do đó \(\triangle B G D = \triangle C G D\) (hai cạnh góc vuông)
\(\Rightarrow B D = C D\) (hai cạnh tương ứng).
Xét \(\triangle B H D\) và \(\triangle C K D\), có
\(\hat{B H D} = \hat{C K D} = 9 0^{\circ}\) (giả thiết);
\(D H = D K\) (chứng minh trên);
\(B D = C D\) (chứng minh trên).
Do đó \(\triangle B H D = \triangle C K D\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow B H = C K\) (hai cạnh tương ứng).