

Lương Thị Ly
Giới thiệu về bản thân



































Gọi \(A\) là số tiền tối đa người này có thể vay, \(A_{i}\) là số tiền nợ sau tháng thứ \(i\). (đơn vị: triệu đồng)
\(r_{1} = \frac{5 \%}{12}\) là lãi suất/1 tháng, trong \(6\) tháng đầu
\(r_{2} = \frac{12 \%}{12} = 1 \%\) là lãi suất/1 tháng, từ tháng thứ 7 trở đi.
Sau 1 tháng, số tiền gốc và lãi là \(A \left(\right. 1 + r \left.\right)\), người đó trả \(15\) triệu nên còn nợ:
\(A_{1} = A \left(\right. 1 + r \left.\right) - 15\)
Sau tháng thứ 2:
\(A_{2} = A_{1} \left(\right. 1 + r_{1} \left.\right) - 15\)
\(= \left(\right. A \left(\right. 1 + r_{1} \left.\right) - 15 \left.\right) \left(\right. 1 + r_{1} \left.\right) - 15\)
\(= A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{2} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{2} - 1 \left]\right.\)
Sau tháng thứ 3:
\(A_{3} = A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{3} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{3} - 1 \left]\right.\)
…….
Sau tháng thứ 6:
\(A_{6} = A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - 1 \left]\right.\).
Sau tháng thứ 7: \(A_{7} = A_{6} \left(\right. 1 + r_{2} \left.\right) - 15\)
Sau tháng thứ 8: \(A_{8} = A_{6} \left(\left(\right. 1 + r_{2} \left.\right)\right)^{2} - \frac{15}{r_{2}} \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{2} - 1 \left]\right.\)
………
Sau tháng thứ 240 (sau đúng 20 năm):
\(A_{240} = A_{6} \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - \frac{15}{r_{2}} \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - 1 \left]\right.\)
Vì phải trả hết nợ sau 20 năm nên:
\(A_{240} = 0\)
\(\Leftrightarrow A_{6} = \frac{15 \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - 1 \left]\right.}{\left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} r_{2}} \approx 1 353 , 819328\)
\(\Rightarrow A = \frac{A_{6} + \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - 1 \left]\right.}{\left(\left(\right. 1 + r_{1} \left.\right)\right)^{6}} \approx 1 \overset{\cdot}{4} 09 , 163992\).
Vậy người này có thể mua được căn nhà có giá trị tối đa là \(\frac{A}{85 \%} \approx 1 657 , 83999\) triệu đồng \(\approx 1 , 65784\) tỷ đồng.