Lê Trần Phương Linh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Trần Phương Linh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

ΔSAB vuông tại \(A \Rightarrow S A ⊥ A B\).

\(\Delta S A D\) vuông tại \(A \Rightarrow S A ⊥ A D\).

Suy ra \(S A ⊥ \left(\right. A B C D \left.\right)\).

Gọi \(I\) là giao điểm của \(B M\)\(A D\).

Dựng \(A H\) vuông góc với \(B M\) tại \(H\).

Dựng \(A K\) vuông góc với \(S H\) tại \(K\).

\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & B M \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ B M\)\(B M ⊥ A H\)

\(\Rightarrow B M ⊥ \left(\right. S A H \left.\right)\).

Ta có \(& B M ⊥ \left(\right. S A H \left.\right) \\ & B M \subset \left(\right. S B M \left.\right) \left.\right} \Rightarrow \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right)\)

Ta có \(& \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right) \\ & \left(\right. S A H \left.\right) \cap \left(\right. S B M \left.\right) = S H \\ & A K \subset \left(\right. S A H \left.\right) , A K ⊥ S H \left.\right} \Rightarrow A K ⊥ \left(\right. S B M \left.\right)\)

\(\Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = A K\)

Xét \(\Delta I A B\)\(M D\) // \(A B \Rightarrow \frac{I D}{I A} = \frac{M D}{A B} = \frac{\frac{1}{2} C D}{A B} = \frac{1}{2}\)

\(\Rightarrow D\) là trung điểm của \(I A\) \(\Rightarrow I A = 2 A D = 2 a\).

\(\Delta A B I\) vuông tại \(A\)\(A H\) là đường cao \(\Rightarrow \frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A I^{2}} = \frac{1}{a^{2}} + \frac{1}{4 a^{2}} = \frac{5}{4 a^{2}}\).

\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & A H \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ A H\).

\(\Delta S A H\) vuông tại \(A\)\(A K\) là đường cao \(\Rightarrow \frac{1}{A K^{2}} = \frac{1}{S A^{2}} + \frac{1}{A H^{2}} = \frac{1}{4 a^{2}} + \frac{5}{4 a^{2}} = \frac{6}{4 a^{2}}\)

\(\Rightarrow A K^{2} = \frac{4 a^{2}}{6}\)\(\Rightarrow A K = \frac{2 a}{\sqrt{6}} \Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{2 a}{\sqrt{6}}\).