

Dương Hoàng Long
Giới thiệu về bản thân



































Ta có: \(P \left(\right. A \left.\right) = 0 , 2 ; P \left(\right. B \left.\right) = 0 , 3 ; P \left(\right. \overset{\overline}{A} \left.\right) = 0 , 8 ; P \left(\right. \overset{\overline}{B} \left.\right) = 0 , 7.\)
a) Gọi \(C\) là biến cố: "Lần bắn thứ nhất trúng bia, lần bắn thứ hai không trúng bia".
Ta có: \(C = \overset{\overline}{A} B\) và \(\overset{\overline}{A} , B\) là hai biến cố độc lập
\(\Rightarrow P \left(\right. C \left.\right) = P \left(\right. \overset{\overline}{A} \left.\right) . P \left(\right. B \left.\right) = 0 , 8.0 , 3 = 0 , 24.\)
b) Gọi biến cố \(D\): "Có ít nhất một lần bắn trúng bia".
Khi đó, biến cố \(\overset{\overline}{D}\): "Cả hai lần bắn đều không trúng bia".
\(\Rightarrow \overset{\overline}{D} = A B \Rightarrow P \left(\right. \overset{\overline}{D} \left.\right) = 0 , 06\)
\(\Rightarrow P \left(\right. D \left.\right) = 1 - P \left(\right. \overset{\overline}{D} \left.\right) = 0 , 94.\)
\(B\) vuông tại \(A \Rightarrow S A ⊥ A B\).
\(\Delta S A D\) vuông tại \(A \Rightarrow S A ⊥ A D\).
Suy ra \(S A ⊥ \left(\right. A B C D \left.\right)\).
Gọi \(I\) là giao điểm của \(B M\) và \(A D\).
Dựng \(A H\) vuông góc với \(B M\) tại \(H\).
Dựng \(A K\) vuông góc với \(S H\) tại \(K\).
\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & B M \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ B M\) mà \(B M ⊥ A H\)
\(\Rightarrow B M ⊥ \left(\right. S A H \left.\right)\).
Ta có \(& B M ⊥ \left(\right. S A H \left.\right) \\ & B M \subset \left(\right. S B M \left.\right) \left.\right} \Rightarrow \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right)\)
Ta có \(& \left(\right. S A H \left.\right) ⊥ \left(\right. S B M \left.\right) \\ & \left(\right. S A H \left.\right) \cap \left(\right. S B M \left.\right) = S H \\ & A K \subset \left(\right. S A H \left.\right) , A K ⊥ S H \left.\right} \Rightarrow A K ⊥ \left(\right. S B M \left.\right)\)
\(\Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = A K\)
Xét \(\Delta I A B\) có \(M D\) // \(A B \Rightarrow \frac{I D}{I A} = \frac{M D}{A B} = \frac{\frac{1}{2} C D}{A B} = \frac{1}{2}\)
\(\Rightarrow D\) là trung điểm của \(I A\) \(\Rightarrow I A = 2 A D = 2 a\).
\(\Delta A B I\) vuông tại \(A\) có \(A H\) là đường cao \(\Rightarrow \frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A I^{2}} = \frac{1}{a^{2}} + \frac{1}{4 a^{2}} = \frac{5}{4 a^{2}}\).
\(& S A ⊥ \left(\right. A B C D \left.\right) \\ & A H \subset \left(\right. A B C D \left.\right) \left.\right} \Rightarrow S A ⊥ A H\).
\(\Delta S A H\) vuông tại \(A\) có \(A K\) là đường cao \(\Rightarrow \frac{1}{A K^{2}} = \frac{1}{S A^{2}} + \frac{1}{A H^{2}} = \frac{1}{4 a^{2}} + \frac{5}{4 a^{2}} = \frac{6}{4 a^{2}}\)
\(\Rightarrow A K^{2} = \frac{4 a^{2}}{6}\)\(\Rightarrow A K = \frac{2 a}{\sqrt{6}} \Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{2 a}{\sqrt{6}}\).
\(\frac{d \left(\right. D , \left(\right. S B M \left.\right) \left.\right)}{d \left(\right. A , \left(\right. S B M \left.\right) \left.\right)} = \frac{D I}{A I} = \frac{1}{2}\)
\(\Rightarrow d \left(\right. D , \left(\right. S B M \left.\right) \left.\right) = \frac{1}{2} d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{a}{\sqrt{6}}\).
Gọi \(O = A C \cap B D\)
\(\Rightarrow S O ⊥ \left(\right. A B C D \left.\right)\). Gọi \(H\) trung điểm của \(O D\).
Xét \(\Delta S O D\), \(M H\) là đường trung bình
\(\Rightarrow M H / / S O\) \(\Rightarrow M H ⊥ \left(\right. A B C D \left.\right)\).
Hình chiếu của đường thẳng \(B M\) trên mặt phẳng \(\left(\right. A B C D \left.\right)\) là \(B H\).
\(\Rightarrow \hat{\left(\right. B M ; \left(\right. A B C D \left.\right) \left.\right)} = \hat{\left(\right. B M ; B H \left.\right)} = \hat{M B H}\)
Xét tam giác vuông \(A B D\) có \(B D = \sqrt{A B^{2} + A D^{2}}\)\(= \sqrt{\left(\left(\right. 2 a \left.\right)\right)^{2} + \left(\left(\right. 2 a \left.\right)\right)^{2}}\)\(= 2 \sqrt{2} a\).
\(\Rightarrow B H = \frac{3}{4} B D = \frac{3 \sqrt{2} a}{2}\) và \(O D = \frac{1}{2} B D = \sqrt{2} a\).
Xét tam giác vuông \(S O D\) có:
\(S O = \sqrt{S D^{2} - O D^{2}}\)
\(= \sqrt{\left(\left(\right. 2 a \left.\right)\right)^{2} - \left(\left(\right. \sqrt{2} a \left.\right)\right)^{2}}\)
\(= \sqrt{2} a\).
\(\Rightarrow M H = \frac{1}{2} S O = \frac{\sqrt{2} a}{2}\).
Ta có: \(tan \hat{M B H} = \frac{M H}{B H}\)
\(= \frac{\frac{a \sqrt{2}}{2}}{\frac{3 \sqrt{2} a}{2}}\)
\(= \frac{1}{3}\)
Gọi \(A\) là số tiền tối đa người này có thể vay, \(A_{i}\) là số tiền nợ sau tháng thứ \(i\). (đơn vị: triệu đồng)
\(r_{1} = \frac{5 \%}{12}\) là lãi suất/1 tháng, trong \(6\) tháng đầu
\(r_{2} = \frac{12 \%}{12} = 1 \%\) là lãi suất/1 tháng, từ tháng thứ 7 trở đi.
Sau 1 tháng, số tiền gốc và lãi là \(A \left(\right. 1 + r \left.\right)\), người đó trả \(15\) triệu nên còn nợ:
\(A_{1} = A \left(\right. 1 + r \left.\right) - 15\)
Sau tháng thứ 2:
\(A_{2} = A_{1} \left(\right. 1 + r_{1} \left.\right) - 15\)
\(= \left(\right. A \left(\right. 1 + r_{1} \left.\right) - 15 \left.\right) \left(\right. 1 + r_{1} \left.\right) - 15\)
\(= A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{2} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{2} - 1 \left]\right.\)
Sau tháng thứ 3:
\(A_{3} = A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{3} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{3} - 1 \left]\right.\)
…….
Sau tháng thứ 6:
\(A_{6} = A \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - 1 \left]\right.\).
Sau tháng thứ 7: \(A_{7} = A_{6} \left(\right. 1 + r_{2} \left.\right) - 15\)
Sau tháng thứ 8: \(A_{8} = A_{6} \left(\left(\right. 1 + r_{2} \left.\right)\right)^{2} - \frac{15}{r_{2}} \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{2} - 1 \left]\right.\)
………
Sau tháng thứ 240 (sau đúng 20 năm):
\(A_{240} = A_{6} \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - \frac{15}{r_{2}} \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - 1 \left]\right.\)
Vì phải trả hết nợ sau 20 năm nên:
\(A_{240} = 0\)
\(\Leftrightarrow A_{6} = \frac{15 \left[\right. \left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} - 1 \left]\right.}{\left(\left(\right. 1 + r_{2} \left.\right)\right)^{234} r_{2}} \approx 1 353 , 819328\)
\(\Rightarrow A = \frac{A_{6} + \frac{15}{r_{1}} \left[\right. \left(\left(\right. 1 + r_{1} \left.\right)\right)^{6} - 1 \left]\right.}{\left(\left(\right. 1 + r_{1} \left.\right)\right)^{6}} \approx 1 \overset{\cdot}{4} 09 , 163992\).
Vậy người này có thể mua được căn nhà có giá trị tối đa là \(\frac{A}{85 \%} \approx 1 657 , 83999\) triệu đồng \(\approx 1 , 65784\) tỷ đồng.