

Vũ Nguyễn Yến Nhi
Giới thiệu về bản thân



































Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
1. Trong hình vẽ có 4 bộ ba điểm thẳng là:
+) \(A , C , D\)
+) \(A , B , E\)
+) \(C , E , F\)
+) \(D , E , B\)
2.
a) Theo hình vẽ, ta có: \(A I + I B = A B\)
Hay \(4 + I B = 9\)
\(I B = 9 - 4 = 5\) cm
b) Vì \(E\) là trung điểm của \(I B\) nên
\(E I = E B = \frac{I B}{2} = \frac{5}{2} = 2 , 5\) (cm)
Theo hình vẽ, ta có: \(A E = A I + I E = 4 + 2 , 5 = 6 , 5\) (cm)
Chiều dài đám đất là:
\(60. \frac{4}{3} = 80\) (m)
Diện tích đám đất là:
\(60.80 = 4 800\) (m\(^{2}\))
Diện tích trồng cây là:
\(4 800. \frac{7}{12} = 2 800\) (m\(^{2}\))
Diện tích còn lại là:
\(4 800 - 2 800 = 2 000\) (m2)
Diện tích ao cá:
\(2 000.30 \% = 600\) (m\(^{2}\))
Vậy diện tích ao cá là 600m2
a) \(\frac{- 5}{9} + \frac{8}{15} + \frac{- 2}{11} + \frac{4}{- 9} + \frac{7}{15} = \left(\right. \frac{- 5}{9} + \frac{- 4}{9} \left.\right) + \left(\right. \frac{8}{15} + \frac{7}{15} \left.\right) + \frac{- 2}{11}\)
\(= \frac{- 9}{9} + \frac{15}{15} + \frac{- 2}{11}\)
\(= - 1 + 1 + \frac{- 2}{11}\)
\(= 0 + \frac{- 2}{11} = \frac{- 2}{11}\).
b) \(\left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} : \frac{2}{7} \left.\right)\)
\(= \left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} . \frac{7}{2} \left.\right)\)
\(= \frac{7}{2} . \left(\right. \frac{5}{6} + \frac{7}{6} \left.\right)\)
\(= \frac{7}{2} . 2\)
\(= 7\)
a) Có \(\frac{- 3}{8} = \frac{- 9}{24} ; \frac{5}{- 12} = \frac{- 10}{12}\)
Vì \(\frac{- 9}{24} > \frac{- 10}{24}\) nên \(\frac{- 3}{8} > \frac{5}{- 12}\).
b) Có \(\frac{3131}{5252} = \frac{3131 : 101}{5252 : 101} = \frac{31}{52}\).
Vậy \(\frac{3131}{5252} = \frac{31}{52}\).
1.33−1+3.55−3+5.77−5+…+99.101101−99
=31.3−11.3+53.5−33.5+75.7−55.7+…+10199.101−9999.101=1.33−1.31+3.55−3.53+5.77−5.75+…+99.101101−99.10199
=1−13+13−15+15−17+…+199−1101=1−31+31−51+51−71+…+991−1011
=1−1101=100101=1−1011=101100
Vậy 21.3+23.5+25.7+…+299.101=1001011.32+3.52+5.72+…+99.1012=101100.
a) Tập hợp các điểm thuộc đoạn thẳng BDBD là B;C;DB;C;D, tập hợp các điểm thuộc không đoạn thẳng BDBD là A;EA;E.
b) Cặp đường thẳng song song là ABAB // DEDE.
c) Gợi ý: Liệt kê theo các giao điểm, có 5 giao điểm nên có 5 cặp đường thẳng cắt nhau.
Các cặp đường thẳng cắt nhau là
ABAB và AEAE cắt nhau tại AA.
BABA và BDBD cắt nhau tại BB.
AEAE và BDBD cắt nhau tại CC.
DEDE và DBDB cắt nhau tại DD.
EAEA và EDED cắt nhau tại EE.
2)
Độ dài của đoạn thẳng ABAB là:
6−4=26−4=2 (cm)
Độ dài đoạn thẳng AMAM là:
2:2=12:2=1 (cm)
Độ dài đoạn thẳng OMOM là:
4+1=54+1=5 (cm)
Đáp số: 55 cm.