Nguyễn Tuấn Anh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Tuấn Anh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Tổng số học sinh là \(1 + 5 = 6\) HS

Xác suất của biến cố bạn được chọn là nam là \(\frac{1}{6}\)


P(x)=−7x6+3x2+5x.

Bậc của đa thức \(P \left(\right. x \left.\right)\) bằng 6.

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5} = \frac{y}{11} = \frac{x + y}{5 + 11} = \frac{32}{16} = 2\)
Suy ra: \(x = 2.5 = 10\)
\(y = 2.11 = 22\)

Ta coˊ : f(a)+f(b)=100a+10100a+100b+10100b=(100a+10)(100b+10)100a(100b+10)+100b(100a+10)=100a+b+10(100a+100b)+1002.100a+b+10(100a+100b)=200+10(100a+100b)200+10(100a+100b)=1

Xét \(\triangle A B C\)\(\hat{A} + \hat{B} + \hat{C} = 18 0^{\circ}\)\(\hat{A} = 9 0^{\circ} ; \hat{B} = 5 0^{\circ}\) suy ra \(9 0^{\circ} + 5 0^{\circ} + \hat{C} = 18 0^{\circ} = > \hat{C} = 4 0^{\circ}\)
b) Xét tam giác \(\triangle B E A\)\(\triangle B E H\).
\(B E\) là cạnh chung
\(\&\text{nbsp}; & \hat{B A E} = \hat{B H E} \left(\right. = 9 0^{\circ} \left.\right) \\ & B A = B H \\ \&\text{nbsp};\text{suy}\&\text{nbsp}; & \&\text{nbsp};\text{ra}\&\text{nbsp}; \triangle A B E = \triangle H B E \&\text{nbsp};(\text{c}.\text{h}-\text{cgv})\&\text{nbsp}; \\ \Rightarrow & \hat{A B E} = \hat{H B E}\).
\(= > B E\) là phân giác của \(\hat{B}\)
c) \(E\) là giao điểm của hai đường cao trong tam giác \(B K C\) nên \(B E\) vuông góc với \(K C\).

Tam giác \(B K C\) cân tại \(B\)\(B I\) là đường cao nên \(B I\) là đường trung tuyến. Do đó \(I\) là trung điểm của \(K C\).

Tổng số HS là 1 + 5 = 6 (HS).

Do khả năng lựa chọn của các bạn là như nhau nên xác suất của biến cố bạn được chọn là nam là \(\frac{1}{6}\).

A(x)=2x3−x2+3x−5B(x)=2x3+x2+x+5A(x)+B(x)=(2x3−x2+3x−5)+(2x3+x2+x+5)=4x3+4x.
\(& \&\text{nbsp};\text{b})\&\text{nbsp};\text{Ta}\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} :\&\text{nbsp}; H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right) \\ & \begin{matrix} & \Rightarrow H \left(\right. x \left.\right) = 4 x^{3} + 4 x \\ & H \left(\right. x \left.\right) = 0 \Rightarrow 4 x^{3} + 4 x = 0 \\ & 4 x \left(\right. x^{2} + 1 \left.\right) = 0 \\ & \Rightarrow 4 x = 0 \left(\right. \&\text{nbsp};\text{do}\&\text{nbsp}; x^{2} + 1 > 0 \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp};\text{m}ọ\text{i}\&\text{nbsp}; x \left.\right) \\ & x = 0.\end{matrix}\)
Vậy nghiệm của \(H \left(\right. x \left.\right)\)  \(x = 0\).


Gọi số sách lớp 7A; 7B quyên góp được lần lượt là \(x , y\) ( ĐK: \(x , y \in \&\text{nbsp}; N^{*}\))

Theo đề bài:

+) Lớp 7A và 7B quyên góp được \(121\) quyển sách

Nên ta có: \(x + y = 121\)

+) Số sách giáo khoa của lớp 6A; lớp 6B tỉ lệ thuận với tỉ lệ thuận với 5; 6

Nên ta có: \(\frac{x}{5} = \frac{y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{x}{5} = \frac{y}{6} = \frac{x + y}{5 + 6} = \frac{121}{11} = 11\)

Suy ra: x=55, y= 66 ( thỏa mãn).

Vậy lớp 6A quyên góp được \(55\) quyển sách, lớp 6B quyên góp được \(66\) cuốn.

Thay x = 9 vào biểu thức, ta có thể viết lại như sau:


C = x^{14} - (x+1)x^{13} + (x+1)x^{12} - (x+1)x^{11} + ... + (x+1)x^2 - (x+1)x + (x+1)


C = x^{14} - x^{14} - x^{13} + x^{13} + x^{12} - x^{12} - x^{11} + ... + x^{3} + x^{2} - x^{2} - x + x + 1


Ta thấy rằng các số hạng liên tiếp nhau triệt tiêu lẫn nhau, do đó biểu thức rút gọn thành:


C = 1


Vậy, giá trị của C là 1.

Thay x = 9 vào biểu thức, ta có thể viết lại như sau:


C = x^{14} - (x+1)x^{13} + (x+1)x^{12} - (x+1)x^{11} + ... + (x+1)x^2 - (x+1)x + (x+1)


C = x^{14} - x^{14} - x^{13} + x^{13} + x^{12} - x^{12} - x^{11} + ... + x^{3} + x^{2} - x^{2} - x + x + 1


Ta thấy rằng các số hạng liên tiếp nhau triệt tiêu lẫn nhau, do đó biểu thức rút gọn thành:


C = 1


Vậy, giá trị của C là 1.