Nguyễn Hải Nam

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hải Nam
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Trăng lên nhẹ

Gió lùa tre

Lá rơi khe

Bài 3. (1 điểm) Cho tam giác \(A B C\) vuông tại \(A\). Trên tia đối của tia \(A B\) lấy điểm \(D\) sao cho \(A D = A B\).

a) Chứng minh rằng \(\Delta C B D\) là tam giác cân.

b) Gọi \(M\) là trung điểm của \(C D\), đường thẳng qua \(D\) và song song với \(B C\) cắt đường thẳng \(B M\) tại \(E\). Chứng minh rằng \(B C = D E\).


Gọi số cây trồng được của mỗi lớp 7A, 7B, 7C lần lượt là \(a\), \(b\), \(c\) (\(a , b , c \in \mathbb{N}^{*}\))

Vì năng suất mỗi người như nhau nên số học sinh và số cây trồng được tỉ lệ thuận với nhau, theo đề ta có:

\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21}\)\(a + b + c = 118\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21} = \frac{a + b + c}{18 + 20 + 21} = \frac{118}{59} = 2\)

\(a = 18.2 = 36\)

\(b = 20.2 = 40\)

\(c = 21.2 = 42\)

Vậy lớp 7A, 7B, 7C trồng được số cây lần lượt là \(36\) (cây), \(40\) (cây), \(42\) (cây).

a) \(H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right)\)

\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 5 x^{2} - 7 x - 2024 \left.\right) + \left(\right. - 2 x^{3} + 9 x^{2} + 7 x + 2025 \left.\right)\)

\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 2 x^{3} \left.\right) + \left(\right. 9 x^{2} - 5 x^{2} \left.\right) + \left(\right. 7 x - 7 x \left.\right) + \left(\right. 2025 - 2024 \left.\right)\)

\(H \left(\right. x \left.\right) = 4 x^{2} + 1\)

b) Ta có: \(x^{2} \geq 0 , \forall x\)

\(\Rightarrow 4 x^{2} \geq 0 , \forall x\)

\(\Rightarrow 4 x^{2} + 1 \geq 1 > 0\)

hay \(H \left(\right. x \left.\right) = 4 x^{2} + 1\) vô nghiệm