Hoàng Nhật Dương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Hoàng Nhật Dương
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

P=(\(\dfrac{4\sqrt{x}}{\sqrt{x}+2}\) + \(\dfrac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)) : (\(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\) - \(\dfrac{2}{\sqrt{x}}\))
P=(\(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\) + \(\dfrac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)) : (\(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\) - \(\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\))
P=\(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)  : \(\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\) 
P=\(\dfrac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)  : \(\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) 
P=\(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)  : \(\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\) 
P=\(\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)  : \(\dfrac{\sqrt{x}+3}{\sqrt{x}\left(2-\sqrt{x}\right)}\) 
P=\(\dfrac{4\sqrt{x}}{\left(2-\sqrt{x}\right)}\)  . \(\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+3}\) 
p=\(\dfrac{4x}{\sqrt{x}+3}\)