

Nguyễn Quốc Chính
Giới thiệu về bản thân



































2x−50+492x−51+482x−52+472x−53+252x−200=0
\(\frac{2 x - 50}{50} + \frac{2 x - 51}{49} + \frac{2 x - 52}{48} + \frac{2 x - 53}{47} + \frac{2 x - 100}{25} + \frac{- 100}{25} = 0\)
\(\frac{2 x - 50}{50} + \frac{2 x - 51}{49} + \frac{2 x - 52}{48} + \frac{2 x - 53}{47} + \frac{2 x - 100}{25} + \left(\right. - 4 \left.\right) = 0\)
\(\frac{2 x - 50}{50} - 1 + \frac{2 x - 51}{49} - 1 + \frac{2 x - 52}{48} - 1 + \frac{2 x - 53}{47} - 1 + \frac{2 x - 100}{25} = 0\)
\(\frac{2 x - 100}{50} + \frac{2 x - 100}{49} + \frac{2 x - 100}{48} + \frac{2 x - 100}{47} + \frac{2 x - 100}{25} = 0\)
\(\left(\right. 2 x - 100 \left.\right) . \left(\right. \frac{1}{50} + \frac{1}{49} + \frac{1}{48} + \frac{1}{47} + \frac{1}{25} \left.\right) = 0\)
\(2 x - 100 = 0\) (Do \(\frac{1}{50} + \frac{1}{49} + \frac{1}{48} + \frac{1}{47} + \frac{1}{25} \neq 0\))
\(x = 50\).
AB // \(D E\).
Theo hệ quả của định lí Thalès ta có:
\(\frac{C A}{C E} = \frac{C B}{C D} = \frac{A B}{D E} = \frac{5}{15} = \frac{1}{3}\)
Hay:
⚡\(\frac{C B}{C D} = \frac{1}{3}\) suy ra \(\frac{x}{7 , 2} = \frac{1}{3}\).
Vậy \(x = \frac{7 , 2. \&\text{nbsp}; 1}{3} = 2 , 4\)
⚡\(\frac{C A}{C E} = \frac{1}{3}\) suy ra \(\frac{3}{y} = \frac{1}{3}\)
Vậy \(y = \frac{3.3}{1} = 9\).
x+1=52x+5
\(\frac{5 \left(\right. x + 1 \left.\right)}{15} = \frac{3 \left(\right. 2 x + 5 \left.\right)}{15}\)
\(5 x + 5 = 6 x + 15\)
\(5 x - 6 x = 15 - 5\)
\(- x = 10\)
\(x = - 10\).
Vậy phương trình có tập nghiệm \(S = \left{\right. - 10 \left.\right}\).
a) Với \(x \neq \&\text{nbsp}; \frac{1}{3}\), \(x \neq - \frac{1}{3}\). ta có:
\(P = \&\text{nbsp}; \left(\right. \frac{2 x}{3 x + 1} - 1 \left.\right) : \left(\right. 1 - \frac{8 x^{2}}{9 x^{2} - 1} \left.\right)\)
\(= \frac{2 x - 3 x - 1}{3 x + 1} : \frac{9 x^{2} - 1 - 8 x^{2}}{9 x^{2} - 1}\)
\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{9 x^{2} - 1}{x^{2} - 1}\)
\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{\left(\right. 3 x + 1 \left.\right) \left(\right. 3 x - 1 \left.\right)}{\left(\right. x + 1 \left.\right) \left(\right. x - 1 \left.\right)}\)
\(= \frac{1 - 3 x}{x - 1}\).
b) Thay \(x = 2\) vào biểu thức ta có:
\(P = \frac{1 - 3.2}{2 - 1} = - 5\)
a) Với \(x \neq \&\text{nbsp}; \frac{1}{3}\), \(x \neq - \frac{1}{3}\). ta có:
\(P = \&\text{nbsp}; \left(\right. \frac{2 x}{3 x + 1} - 1 \left.\right) : \left(\right. 1 - \frac{8 x^{2}}{9 x^{2} - 1} \left.\right)\)
\(= \frac{2 x - 3 x - 1}{3 x + 1} : \frac{9 x^{2} - 1 - 8 x^{2}}{9 x^{2} - 1}\)
\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{9 x^{2} - 1}{x^{2} - 1}\)
\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{\left(\right. 3 x + 1 \left.\right) \left(\right. 3 x - 1 \left.\right)}{\left(\right. x + 1 \left.\right) \left(\right. x - 1 \left.\right)}\)
\(= \frac{1 - 3 x}{x - 1}\).
b) Thay \(x = 2\) vào biểu thức ta có:
\(P = \frac{1 - 3.2}{2 - 1} = - 5\)