Nguyễn Quốc Chính

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Quốc Chính
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

2x−50+492x−51+482x−52+472x−53+252x−200=0

\(\frac{2 x - 50}{50} + \frac{2 x - 51}{49} + \frac{2 x - 52}{48} + \frac{2 x - 53}{47} + \frac{2 x - 100}{25} + \frac{- 100}{25} = 0\)

\(\frac{2 x - 50}{50} + \frac{2 x - 51}{49} + \frac{2 x - 52}{48} + \frac{2 x - 53}{47} + \frac{2 x - 100}{25} + \left(\right. - 4 \left.\right) = 0\)

\(\frac{2 x - 50}{50} - 1 + \frac{2 x - 51}{49} - 1 + \frac{2 x - 52}{48} - 1 + \frac{2 x - 53}{47} - 1 + \frac{2 x - 100}{25} = 0\)

\(\frac{2 x - 100}{50} + \frac{2 x - 100}{49} + \frac{2 x - 100}{48} + \frac{2 x - 100}{47} + \frac{2 x - 100}{25} = 0\)

\(\left(\right. 2 x - 100 \left.\right) . \left(\right. \frac{1}{50} + \frac{1}{49} + \frac{1}{48} + \frac{1}{47} + \frac{1}{25} \left.\right) = 0\)

\(2 x - 100 = 0\) (Do \(\frac{1}{50} + \frac{1}{49} + \frac{1}{48} + \frac{1}{47} + \frac{1}{25} \neq 0\))

\(x = 50\).

AB // \(D E\).

Theo hệ quả của định lí Thalès ta có:

\(\frac{C A}{C E} = \frac{C B}{C D} = \frac{A B}{D E} = \frac{5}{15} = \frac{1}{3}\)

Hay:

\(\frac{C B}{C D} = \frac{1}{3}\) suy ra \(\frac{x}{7 , 2} = \frac{1}{3}\).

Vậy \(x = \frac{7 , 2. \&\text{nbsp}; 1}{3} = 2 , 4\)

\(\frac{C A}{C E} = \frac{1}{3}\) suy ra \(\frac{3}{y} = \frac{1}{3}\)

Vậy \(y = \frac{3.3}{1} = 9\).

x+1=52x+5

\(\frac{5 \left(\right. x + 1 \left.\right)}{15} = \frac{3 \left(\right. 2 x + 5 \left.\right)}{15}\)

\(5 x + 5 = 6 x + 15\)

\(5 x - 6 x = 15 - 5\)

\(- x = 10\)

\(x = - 10\).

Vậy phương trình có tập nghiệm \(S = \left{\right. - 10 \left.\right}\).

a)  Với \(x \neq \&\text{nbsp}; \frac{1}{3}\)\(x \neq - \frac{1}{3}\). ta có:

\(P = \&\text{nbsp}; \left(\right. \frac{2 x}{3 x + 1} - 1 \left.\right) : \left(\right. 1 - \frac{8 x^{2}}{9 x^{2} - 1} \left.\right)\)

\(= \frac{2 x - 3 x - 1}{3 x + 1} : \frac{9 x^{2} - 1 - 8 x^{2}}{9 x^{2} - 1}\)

\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{9 x^{2} - 1}{x^{2} - 1}\)

\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{\left(\right. 3 x + 1 \left.\right) \left(\right. 3 x - 1 \left.\right)}{\left(\right. x + 1 \left.\right) \left(\right. x - 1 \left.\right)}\)

\(= \frac{1 - 3 x}{x - 1}\).

b) Thay \(x = 2\) vào biểu thức ta có:

     \(P = \frac{1 - 3.2}{2 - 1} = - 5\)

a)  Với \(x \neq \&\text{nbsp}; \frac{1}{3}\)\(x \neq - \frac{1}{3}\). ta có:

\(P = \&\text{nbsp}; \left(\right. \frac{2 x}{3 x + 1} - 1 \left.\right) : \left(\right. 1 - \frac{8 x^{2}}{9 x^{2} - 1} \left.\right)\)

\(= \frac{2 x - 3 x - 1}{3 x + 1} : \frac{9 x^{2} - 1 - 8 x^{2}}{9 x^{2} - 1}\)

\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{9 x^{2} - 1}{x^{2} - 1}\)

\(= \frac{- \left(\right. x + 1 \left.\right)}{3 x + 1} . \frac{\left(\right. 3 x + 1 \left.\right) \left(\right. 3 x - 1 \left.\right)}{\left(\right. x + 1 \left.\right) \left(\right. x - 1 \left.\right)}\)

\(= \frac{1 - 3 x}{x - 1}\).

b) Thay \(x = 2\) vào biểu thức ta có:

     \(P = \frac{1 - 3.2}{2 - 1} = - 5\)