

nguyn anh
Giới thiệu về bản thân
Chào mừng bạn đến với trang cá nhân của nguyn anh





0





0





0





0





0





0





0
2025-02-28 21:59:56
Bước 1: Xét tam giác vuông \(A C E\)
Vì \(C E \bot A B\), ta có \(\triangle A C E\) vuông tại \(E\). Theo định lý Pythagoras:
\(A C^{2} = A E^{2} + E C^{2}\)
Bước 2: Xét tam giác vuông \(A C F\)
Tương tự, vì \(C F \bot A D\), ta có \(\triangle A C F\) vuông tại \(F\), nên:
\(A C^{2} = A F^{2} + C F^{2}\)
Bước 3: Xét tổng hai phương trình
Từ hai phương trình trên:
\(A E^{2} + E C^{2} + A F^{2} + C F^{2} = 2 A C^{2}\)
Mặt khác, trong hình bình hành, ta có tính chất:
\(E C^{2} = A F \cdot A D , C F^{2} = A E \cdot A B\)
Thay vào phương trình:
\(A E^{2} + A F^{2} + A E \cdot A B + A F \cdot A D = 2 A C^{2}\)
Do hình bình hành có tính chất đối xứng, ta cũng có:
\(A E^{2} + A F^{2} = A C^{2}\)
Suy ra:
\(A C^{2} + A E \cdot A B + A F \cdot A D = 2 A C^{2}\)
Từ đó suy ra:
\(A E \cdot A B + A F \cdot A D = A C^{2}\)