

Phạm Trung Hiếu
Giới thiệu về bản thân



































(x - a)/bc + (x - b)/ca + (x - c)/ab = 2/a + 2/b + 2/c
a(x - a) + b(x - b) + c(x - c) = 2bc + 2ac + 2ab
ax - a² + bx - b² + cx - c² = 2bc + 2ac + 2ab
(a + b + c)x = a² + b² + c² + 2bc + 2ac + 2ab
(a + b + c)x = (a + b + c)²
x = (a + b + c)²/(a + b + c)
x = a + b + c
Vậy S = {a + b + c}
a) ΔABE,ΔACFΔABE,ΔACF có A^A chung và AEB^=AFC^(=90o)AEB=AFC(=90o) nên suy ra ΔABE ΔACF(g.g)ΔABE ΔACF(g.g) ⇒ABAC=AEAF⇒AB.AF=AC.AE⇒ACAB=AFAE⇒AB.AF=AC.AE.
b) Từ AB.AF=AC.AE⇒AEAB=AFACAB.AF=AC.AE⇒ABAE=ACAF. Từ đó suy ra ΔAEF ΔABC(c.g.c)ΔAEF ΔABC(c.g.c) ⇒AFE^=ACB^⇒AFE=ACB
c) Xét tam giác AEF có C∈AE,B∈AF,K∈EFC∈AE,B∈AF,K∈EF và K,B,CK,B,C thẳng hàng nên áp dụng định lý Menelaus, ta có KFKE.CECA.BABF=1KEKF.CACE.BFBA=1 (1).
Mặt khác, cũng trong tam giác AEF, có C∈AE,B∈AF,I∈EFC∈AE,B∈AF,I∈EF và AI, EB, FC đồng quy nên theo định lý Ceva, IFIE.CECA.BABF=1IEIF.CACE.BFBA=1 (2).
Từ (1) và (2), suy ra KFKE=IFIE⇔KF.IE=KE.IFKEKF=IEIF⇔KF.IE=KE.IF
a) Với �=−1m=−1, hàm số trở thành �=−2�+1y=−2x+1.
Xét hàm số �=−2�+1y=−2x+1 :
Thay �=0x=0 thì �=1y=1.
Suy ra đồ thị hàm số �=−2�+1y=−2x+1 đi qua điểm có tọa độ (0;1)(0;1).
Thay �=1x=1 thì �=−1y=−1.
Vì đường thẳng (�):�=��+�(d):y=ax+b song song với đường thẳng (�′ ):�=−3�+9(d′ ):y=−3x+9 nên: �≠−3;�≠9a=−3;b=9.
Khi đó ta có: (�):�=−3�+�(d):y=−3x+b và �≠9b
khác 9.
Vì đường thẳng (�):�=��+�(d):y=ax+b đi qua �(1;−8)A(1;−8) nên: −8=−3.1+�−8=−3.1+b
Suy ra �=−5b=−5 (thoả mãn)
Vậy đường thẳng cần tìm là (�):�=−3�−5(d):y=−3x−5.
Suy ra đồ thị hàm số �=−2�+1y=−2x+1 đi qua điểm có tọa độ (1;−1)(1;−1).
Vì đường thẳng (�):�=��+�(d):y=ax+b song song với đường thẳng (�′ ):�=−3�+9(d′ ):y=−3x+9 nên: �≠−3;�≠9a
khác−3;b
khác 9.
Khi đó ta có: (�):�=−3�+�(d):y=−3x+b và �≠9b
khác 9.
Vì đường thẳng (�):�=��+�(d):y=ax+b đi qua �(1;−8)A(1;−8) nên: −8=−3.1+�−8=−3.1+b
Suy ra �=−5b=−5 (thoả mãn)
Vậy đường thẳng cần tìm là (�):�=−3�−5(d):y=−3x−5.
Gọi x (h) là thời gian người đó đi từ thành phố về quê (x > 0)
20 phút = 1/3 h
Thời gian người đó đi từ quê lên thành phố là: x + 1/3 (h)
Quãng đường đi từ thành phố về quê: 30x (km)
Quãng đường đi từ quê lên thành phố: 25(x + 1/3) (km)
Theo đề bài, ta có phương trình:
30x = 25(x + 1/3)
30x = 25x + 25/3
30x - 25x = 25/3
5x = 25/3
x = 25/3 : 5
x = 5/3 (nhận)
Vậy quãng đường từ thành phố về quê là: 30 . 5/3 = 50 km
3x - 5 = 4
3x = 4 + 5
3x = 9
x = 9 : 3
x = 3
Vậy S = {3}
b) 2x/3 + (3x - 1)/6 = x/2
4x + 3x - 1 = 3x
7x - 3x = 1
4x = 1
x = 1/4
Vậy S = {1/4}