Nguyễn Đức Long

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Đức Long
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

GT

\(\Delta A B C : A = 9 0^{\circ}\)

\(B D\) là phân giác của góc \(B\)

\(D E \bot B C \left(\right. E \in A C \left.\right)\)

\(B A \cap E D = \left{\right. F \left.\right}\)

\(B D \cap F C = \left{\right. K \left.\right}\)

KL

a) \(\Delta B A D = \Delta B E D\).

b) \(\Delta B C F\) cân tại \(B\).

c) \(B D\) là đường trung tuyesn của \(\Delta B C F\).

loading... 

a) Xét \(\Delta B A D\) và \(\Delta B E D\) lần lượt vuông tại \(A\) và \(E\).

    \(B D\) chung.

    \(\hat{A B D} = \hat{E B D}\) (\(B D\) là tia phân giác).

Suy ra \(\Delta B A D = \Delta B E D\) (cạnh huyền - góc nhọn).

b) Vì \(\Delta B A D = \Delta B E D \left(\right. c / m\) phần a) nên \(A D = E D ; B A = B E\) (2)

Xét \(\Delta A F D\) vuông tại \(A\) và \(\Delta E C D\) vuông tại \(E\) có:

    \(A D = E D \left(\right. c m t \left.\right)\)

    \(\hat{A D F} = \hat{E D C}\) (đối đỉnh)

Suy ra \(\Delta A F D = \Delta E C D\) (cạnh góc vuông - góc nhọn)

Nên \(A F = E C\) (2).

Từ (1) và (2) suy ra \(A F + B A = B E + E C\)

Hay \(B F = B C\)

Vậy \(\Delta B C F\) cân tại \(B\).

c) Giả sử \(B D\) kéo dài cắt \(F C\) tại \(K\)

Xét \(\Delta B K F\) và \(\Delta B K C\) có:

    \(B K\) là cạnh chung

    \(\hat{K B F} = \hat{K B C}\) (Vì \(B D\) là phân giác của \(\hat{A B C}\) )

     \(B F = B C\) ( chứng minh phần \(b \left.\right)\)

Suy ra \(\Delta B K F = \Delta B K C \left(\right.\) c.g.c \(\left.\right)\)

Suy ra \(K F = K C\) (hai cạnh tương ứng)

Vậy \(B K\) hay \(B D\) là đường trung tuyến của \(\Delta B C F\).

GT

\(\Delta A B C : A = 9 0^{\circ}\)

\(B D\) là phân giác của góc \(B\)

\(D E \bot B C \left(\right. E \in A C \left.\right)\)

KL

a) \(\Delta B A D = \Delta B E D\).

b) \(\Delta B C F\) cân tại \(B\).

c) \(B D\) là đường trung tuyesn của \(\Delta B C F\).

loading... 

a) Xét \(\Delta B A D\) và \(\Delta B E D\) lần lượt vuông tại \(A\) và \(E\).

    \(B D\) chung.

    \(\hat{A B D} = \hat{E B D}\) (\(B D\) là tia phân giác).

Suy ra \(\Delta B A D = \Delta B E D\) (cạnh huyền - góc nhọn).

b) Vì \(\Delta B A D = \Delta B E D \left(\right. c / m\) phần a) nên \(A D = E D ; B A = B E\) (2)

Xét \(\Delta A F D\) vuông tại \(A\) và \(\Delta E C D\) vuông tại \(E\) có:

    \(A D = E D \left(\right. c m t \left.\right)\)

    \(\hat{A D F} = \hat{E D C}\) (đối đỉnh)

Suy ra \(\Delta A F D = \Delta E C D\) (cạnh góc vuông - góc nhọn)

Nên \(A F = E C\) (2).

Từ (1) và (2) suy ra \(A F + B A = B E + E C\)

Hay \(B F = B C\)

Vậy \(\Delta B C F\) cân tại \(B\).

c) Giả sử \(B D\) kéo dài cắt \(F C\) tại \(K\)

Xét \(\Delta B K F\) và \(\Delta B K C\) có:

    \(B K\) là cạnh chung

    \(\hat{K B F} = \hat{K B C}\) (Vì \(B D\) là phân giác của \(\hat{A B C}\) )

     \(B F = B C\) ( chứng minh phần \(b \left.\right)\)

Suy ra \(\Delta B K F = \Delta B K C \left(\right.\) c.g.c \(\left.\right)\)

Suy ra \(K F = K C\) (hai cạnh tương ứng)

Vậy \(B K\) hay \(B D\) là đường trung tuyến của \(\Delta B C F\).

GT

\(\Delta A B C : A = 9 0^{\circ}\)

\(B D\) là phân giác của góc \(B\)

\(D E \bot B C \left(\right. E \in A C \left.\right)\)

\(B A \cap E D = \left{\right. F \left.\right}\)

\(B D \cap F C = \left{\right. K \left.\right}\)

KL

a) \(\Delta B A D = \Delta B E D\).

b) \(\Delta B C F\) cân tại \(B\).

c) \(B D\) là đường trung tuyesn của \(\Delta B C F\).

loading... 

a) Xét \(\Delta B A D\) và \(\Delta B E D\) lần lượt vuông tại \(A\) và \(E\).

    \(B D\) chung.

    \(\hat{A B D} = \hat{E B D}\) (\(B D\) là tia phân giác).

Suy ra \(\Delta B A D = \Delta B E D\) (cạnh huyền - góc nhọn).

b) Vì \(\Delta B A D = \Delta B E D \left(\right. c / m\) phần a) nên \(A D = E D ; B A = B E\) (2)

Xét \(\Delta A F D\) vuông tại \(A\) và \(\Delta E C D\) vuông tại \(E\) có:

    \(A D = E D \left(\right. c m t \left.\right)\)

    \(\hat{A D F} = \hat{E D C}\) (đối đỉnh)

Suy ra \(\Delta A F D = \Delta E C D\) (cạnh góc vuông - góc nhọn)

Nên \(A F = E C\) (2).

Từ (1) và (2) suy ra \(A F + B A = B E + E C\)

Hay \(B F = B C\)

Vậy \(\Delta B C F\) cân tại \(B\).

c) Giả sử \(B D\) kéo dài cắt \(F C\) tại \(K\)

Xét \(\Delta B K F\) và \(\Delta B K C\) có:

    \(B K\) là cạnh chung

    \(\hat{K B F} = \hat{K B C}\) (Vì \(B D\) là phân giác của \(\hat{A B C}\) )

     \(B F = B C\) ( chứng minh phần \(b \left.\right)\)

Suy ra \(\Delta B K F = \Delta B K C \left(\right.\) c.g.c \(\left.\right)\)

Suy ra \(K F = K C\) (hai cạnh tương ứng)

Vậy \(B K\) hay \(B D\) là đường trung tuyến của \(\Delta B C F\).

GT

\(\Delta A B C : A = 9 0^{\circ}\)

\(B D\) là phân giác của góc \(B\)

\(D E \bot B C \left(\right. E \in A C \left.\right)\)

\(B A \cap E D = \left{\right. F \left.\right}\)

\(B D \cap F C = \left{\right. K \left.\right}\)

KL

a) \(\Delta B A D = \Delta B E D\).

b) \(\Delta B C F\) cân tại \(B\).

c) \(B D\) là đường trung tuyesn của \(\Delta B C F\).

loading... 

a) Xét \(\Delta B A D\) và \(\Delta B E D\) lần lượt vuông tại \(A\) và \(E\).

    \(B D\) chung.

    \(\hat{A B D} = \hat{E B D}\) (\(B D\) là tia phân giác).

Suy ra \(\Delta B A D = \Delta B E D\) (cạnh huyền - góc nhọn).

b) Vì \(\Delta B A D = \Delta B E D \left(\right. c / m\) phần a) nên \(A D = E D ; B A = B E\) (2)

Xét \(\Delta A F D\) vuông tại \(A\) và \(\Delta E C D\) vuông tại \(E\) có:

    \(A D = E D \left(\right. c m t \left.\right)\)

    \(\hat{A D F} = \hat{E D C}\) (đối đỉnh)

Suy ra \(\Delta A F D = \Delta E C D\) (cạnh góc vuông - góc nhọn)

Nên \(A F = E C\) (2).

Từ (1) và (2) suy ra \(A F + B A = B E + E C\)

Hay \(B F = B C\)

Vậy \(\Delta B C F\) cân tại \(B\).

c) Giả sử \(B D\) kéo dài cắt \(F C\) tại \(K\)

Xét \(\Delta B K F\) và \(\Delta B K C\) có:

    \(B K\) là cạnh chung

    \(\hat{K B F} = \hat{K B C}\) (Vì \(B D\) là phân giác của \(\hat{A B C}\) )

     \(B F = B C\) ( chứng minh phần \(b \left.\right)\)

Suy ra \(\Delta B K F = \Delta B K C \left(\right.\) c.g.c \(\left.\right)\)

Suy ra \(K F = K C\) (hai cạnh tương ứng)

Vậy \(B K\) hay \(B D\) là đường trung tuyến của \(\Delta B C F\).