Nguyễn Hải Anh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hải Anh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Chứng minh rằng \(\Delta C B D\) là tam giác cân.

Dữ liệu:

  • Tam giác \(\Delta A B C\) vuông tại \(A\).
  • Trên tia đối của tia \(A B\), lấy điểm \(D\) sao cho \(A D = A B\).

Chứng minh:

  • Ta có \(\Delta A B C\) vuông tại \(A\), do đó \(\angle A = 9 0^{\circ}\).
  • \(A D = A B\) theo giả thiết.

Ta cần chứng minh rằng \(\Delta C B D\) là tam giác cân, tức là \(B C = B D\).

  • Xét tam giác vuông \(\Delta A B C\), ta có:
    • \(A B = A C\) (do đây là tam giác vuông cân).
  • Vậy, ta có \(\triangle A B D\) là tam giác vuông tại \(A\), với \(A B = A D\). Do đó, \(\triangle A B D\) là tam giác vuông cân.
  • Xét tam giác \(\Delta C B D\):
    • Ta có \(B C = B D\) bởi vì \(\triangle A B C\) vuông tại \(A\) và \(\triangle A B D\) vuông cân, từ đó suy ra \(\Delta C B D\) là tam giác cân.

b) Chứng minh rằng \(B C = D E\).

Dữ liệu:

  • Gọi \(M\) là trung điểm của \(C D\), đường thẳng qua \(D\) và song song với \(B C\) cắt đường thẳng \(B M\) tại \(E\).

Chứng minh:

  • Do \(M\) là trung điểm của \(C D\), ta có \(C M = M D\).
  • Đường thẳng qua \(D\) và song song với \(B C\), nên \(D E \parallel B C\).

Ta sẽ chứng minh rằng \(B C = D E\) bằng cách sử dụng định lý "Hai đoạn thẳng song song với nhau trong tam giác vuông" (định lý cạnh góc vuông trong tam giác vuông).

  • Vì \(D E \parallel B C\), và đoạn thẳng \(B M\) cắt cả hai đường thẳng này tại \(E\), ta có tam giác \(\Delta B C D\) và tam giác \(\Delta B D E\) đồng dạng (theo định lý đồng dạng tam giác).
  • Vì vậy, ta có tỉ số tương ứng giữa các cạnh của hai tam giác đồng dạng này. Cụ thể, từ sự đồng dạng này, ta có:

\(\frac{B C}{B D} = \frac{D E}{B C} .\)

Do đó, suy ra \(B C = D E\).

Kết luận:

  • Phần a) Chứng minh \(\Delta C B D\) là tam giác cân.
  • Phần b) Chứng minh \(B C = D E\).

a) Chứng minh rằng \(\Delta C B D\) là tam giác cân.

Dữ liệu:

  • Tam giác \(\Delta A B C\) vuông tại \(A\).
  • Trên tia đối của tia \(A B\), lấy điểm \(D\) sao cho \(A D = A B\).

Chứng minh:

  • Ta có \(\Delta A B C\) vuông tại \(A\), do đó \(\angle A = 9 0^{\circ}\).
  • \(A D = A B\) theo giả thiết.

Ta cần chứng minh rằng \(\Delta C B D\) là tam giác cân, tức là \(B C = B D\).

  • Xét tam giác vuông \(\Delta A B C\), ta có:
    • \(A B = A C\) (do đây là tam giác vuông cân).
  • Vậy, ta có \(\triangle A B D\) là tam giác vuông tại \(A\), với \(A B = A D\). Do đó, \(\triangle A B D\) là tam giác vuông cân.
  • Xét tam giác \(\Delta C B D\):
    • Ta có \(B C = B D\) bởi vì \(\triangle A B C\) vuông tại \(A\) và \(\triangle A B D\) vuông cân, từ đó suy ra \(\Delta C B D\) là tam giác cân.

b) Chứng minh rằng \(B C = D E\).

Dữ liệu:

  • Gọi \(M\) là trung điểm của \(C D\), đường thẳng qua \(D\) và song song với \(B C\) cắt đường thẳng \(B M\) tại \(E\).

Chứng minh:

  • Do \(M\) là trung điểm của \(C D\), ta có \(C M = M D\).
  • Đường thẳng qua \(D\) và song song với \(B C\), nên \(D E \parallel B C\).

Ta sẽ chứng minh rằng \(B C = D E\) bằng cách sử dụng định lý "Hai đoạn thẳng song song với nhau trong tam giác vuông" (định lý cạnh góc vuông trong tam giác vuông).

  • Vì \(D E \parallel B C\), và đoạn thẳng \(B M\) cắt cả hai đường thẳng này tại \(E\), ta có tam giác \(\Delta B C D\) và tam giác \(\Delta B D E\) đồng dạng (theo định lý đồng dạng tam giác).
  • Vì vậy, ta có tỉ số tương ứng giữa các cạnh của hai tam giác đồng dạng này. Cụ thể, từ sự đồng dạng này, ta có:

\(\frac{B C}{B D} = \frac{D E}{B C} .\)

Do đó, suy ra \(B C = D E\).

Kết luận:

  • Phần a) Chứng minh \(\Delta C B D\) là tam giác cân.
  • Phần b) Chứng minh \(B C = D E\).

a) Chứng minh rằng \(\Delta C B D\) là tam giác cân.

Dữ liệu:

  • Tam giác \(\Delta A B C\) vuông tại \(A\).
  • Trên tia đối của tia \(A B\), lấy điểm \(D\) sao cho \(A D = A B\).

Chứng minh:

  • Ta có \(\Delta A B C\) vuông tại \(A\), do đó \(\angle A = 9 0^{\circ}\).
  • \(A D = A B\) theo giả thiết.

Ta cần chứng minh rằng \(\Delta C B D\) là tam giác cân, tức là \(B C = B D\).

  • Xét tam giác vuông \(\Delta A B C\), ta có:
    • \(A B = A C\) (do đây là tam giác vuông cân).
  • Vậy, ta có \(\triangle A B D\) là tam giác vuông tại \(A\), với \(A B = A D\). Do đó, \(\triangle A B D\) là tam giác vuông cân.
  • Xét tam giác \(\Delta C B D\):
    • Ta có \(B C = B D\) bởi vì \(\triangle A B C\) vuông tại \(A\) và \(\triangle A B D\) vuông cân, từ đó suy ra \(\Delta C B D\) là tam giác cân.

b) Chứng minh rằng \(B C = D E\).

Dữ liệu:

  • Gọi \(M\) là trung điểm của \(C D\), đường thẳng qua \(D\) và song song với \(B C\) cắt đường thẳng \(B M\) tại \(E\).

Chứng minh:

  • Do \(M\) là trung điểm của \(C D\), ta có \(C M = M D\).
  • Đường thẳng qua \(D\) và song song với \(B C\), nên \(D E \parallel B C\).

Ta sẽ chứng minh rằng \(B C = D E\) bằng cách sử dụng định lý "Hai đoạn thẳng song song với nhau trong tam giác vuông" (định lý cạnh góc vuông trong tam giác vuông).

  • Vì \(D E \parallel B C\), và đoạn thẳng \(B M\) cắt cả hai đường thẳng này tại \(E\), ta có tam giác \(\Delta B C D\) và tam giác \(\Delta B D E\) đồng dạng (theo định lý đồng dạng tam giác).
  • Vì vậy, ta có tỉ số tương ứng giữa các cạnh của hai tam giác đồng dạng này. Cụ thể, từ sự đồng dạng này, ta có:

\(\frac{B C}{B D} = \frac{D E}{B C} .\)

Do đó, suy ra \(B C = D E\).

Kết luận:

  • Phần a) Chứng minh \(\Delta C B D\) là tam giác cân.
  • Phần b) Chứng minh \(B C = D E\).

 Giờ đây tôi đã là một học sinh lớp bảy của mái trường Trung học cơ sở thân yêu. Nhưng tôi vẫn còn nhớ như in những kỉ niệm của ngày tựu trường đầu tiên.

Đó là một buổi sáng mùa thu thật đẹp. Bầu trời cao vợi và xanh thẳm. Mẹ đưa tôi đến trường bằng chiếc xe đạp đã cũ. Hôm nay, tôi sẽ dự lễ khai giảng đầu tiên. Con đường đi học đã quen thuộc, nhưng tôi lại cảm thấy xôn xao, bồi hồi. Cuối cùng cánh cổng trường cấp một cũng hiện ra trước mắt tôi. Tôi ngạc nhiên nhìn ngôi trường hôm nay thật khác. Các anh chị học sinh lớp lớn hân hoan bước vào trường. Tôi được mẹ dắt vào hàng ghế của khối lớp một. Xung quanh, bố mẹ của các bạn khẽ thì thầm trò chuyện với con mình. Cô giáo chủ nhiệm lần lượt đưa chúng tôi vào vị trí ngồi của mình. Hôm nay, cô thật xinh đẹp trong bộ áo dài thướt tha. Nụ cười của cô khiến tôi cảm thấy thật ấm áp. Buổi lễ khai giảng diễn ra thật long trọng. Tôi cảm thấy vui vẻ và tự hào vì mình đã là học sinh lớp Một. Lời phát biểu của cô hiệu trưởng đã kết thúc buổi lễ. Tiếng trống vang lên như một lời chào mừng năm học mới đã đến

Buổi lễ khai giảng đã để lại cho tôi một kỉ niệm đẹp không thể nào quên. Những cảm xúc trong sáng, hồn nhiên ấy, tôi luôn để nó trong một góc của trái tim mình, để luôn nhớ về nó. Ngày đầu tiên đi học.