

Vũ Hoài Anh
Giới thiệu về bản thân



































Trong tam giác ADBADB, ta có: MNMN // ABAB (gt)
Suy ra DNDB =MNABDBDN =ABMN (hệ quả định lí Thalès) (1)
Trong tam giác ACBACB, ta có: PQPQ // ABAB (gt)
Suy ra CQCB =PQABCBCQ =ABPQ (hệ quả định lí Thalès) (2)
Lại có: NQNQ // ABAB (gt); ABAB // CDCD (gt)
Suy ra NQNQ // CDCD
Trong tam giác BDCBDC, ta có: NQNQ // CDCD (chứng minh trên)
Suy ra DNDB =CQCBDBDN =CBCQ (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra MNAB =PQAB hayABMN =ABPQ hayMN = PQ$ (đpcm).
Xét tam giác ABCABC có BC⊥ AB′BC⊥ AB′ và B′C′⊥AB′B′C′⊥AB′ nên suy ra BCBC // B′C′B′C′.
Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′AB′AB =BC′BC
Suy ra xx+h =aa′x+hx =a′a
a′.x=a(x+h)a′.x=a(x+h)
a′.x−ax=aha′.x−ax=ah
x(a′−a)=ahx(a′−a)=ah
x=aha′ −ax=a′ −aah.
Lấy DD là trung điểm của cạnh BCBC. Khi đó,
ADAD là đường trung tuyến của tam giác ABCABC.
Vì GG là trọng tâm của tam giác ABCABC nên điểm GG nằm trên cạnh ADAD.
Ta có AGAD=23ADAG=32 hay AG=23ADAG=32AD.
Vì MGMG // ABAB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23ADAG=BDBM=32.
Ta có BD=CDBD=CD (vì DD là trung điểm của cạnh BCBC) nên BMBC=BM2BD=22.3=13BCBM=2BDBM=2.32=31.
Do đó BM=13BCBM=31BC (đpcm).
ABCD là hình thang suy ra ABAB // CDCD.
Áp dụng hệ quả định lí Thalès, ta có: OAOC =OBODOCOA =ODOB
Suy ra OA.OD=OB.OCOA.OD=OB.OC (đpcm)
áp dụng định lí Thalès trong tam giác:
DE//AC nên AE/AB = CD/BC
DF//AC nên AF/AC =CD/BC+ BD/BC=BC/BC=1