Phạm Tiến Đạt

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Phạm Tiến Đạt
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Chứng minh tứ giác BHCD là hình bình hành:

Xét tứ giác BHCD:

    M là trung điểm của BC (gt)

   M là trung điểm của HD (gt)

    *Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.

    * Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).

b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:

 

Xét hình bình hành BHCD:

   BH // CD (tính chất hình bình hành)

   CH // BD (tính chất hình bình hành)

Xét tam giác ABC:

    * AF là đường cao (gt) => AF vuông góc với BC

    * Mà BH // CD (cmt) => AF vuông góc với CD

Tương tự:

     CH // BD (cmt) => AF vuông góc với BD

Kết luận:

    * Tam giác ABD vuông tại B (AF vuông góc với BD)

    * Tam giác ACD vuông tại C (AF vuông góc với CD)

 

**c) Chứng minh IA=IB=IC=ID:**

 

* **Xét tam giác AHD:**

    * M là trung điểm của HD (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác AHD

    * Vậy IA = ID (tính chất đường trung tuyến trong tam giác)

* **Xét tam giác BCD:**

    * M là trung điểm của BC (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác BCD

    * Vậy IB = IC (tính chất đường trung tuyến trong tam giác)

* **Kết luận:**

    * IA = IB = IC = ID

 

**Tóm lại:**

 

* Tứ giác BHCD là hình bình hành.

* Tam giác ABD vuông tại B và tam giác ACD vuông tại C. 

* IA = IB = IC = ID.

 

## Bài giải:

 

**a) Tứ giác BHCK là hình gì?**

 

* **Bước 1:** Xét tứ giác BHCK có: $\widehat{BHC} = \widehat{BKC} = 90^\circ$ (BE, CF là đường cao)

* **Bước 2:** Suy ra tứ giác BHCK nội tiếp đường tròn đường kính BC.

* **Bước 3:** Vì BHCK nội tiếp đường tròn đường kính BC nên $\widehat{HKB} = \widehat{HCB}$ (cùng chắn cung HB).

* **Bước 4:** Mặt khác, $\widehat{HCB} = \widehat{HAB}$ (cùng phụ với $\widehat{ABC}$).

* **Bước 5:** Từ bước 3 và bước 4 suy ra $\widehat{HKB} = \widehat{HAB}$.

* **Bước 6:** Xét tam giác HKB và tam giác HAB có:

    * $\widehat{HKB} = \widehat{HAB}$ (chứng minh trên)

    * $\widehat{KHB} = \widehat{AHB} = 90^\circ$

    * $\Rightarrow$ $\triangle HKB \sim \triangle HAB$ (g.g)

* **Bước 7:** Từ bước 6 suy ra $\frac{HK}{HA} = \frac{HB}{HB} = 1 \Rightarrow HK = HA$.

* **Bước 8:** Xét tam giác HKA có HK = HA nên tam giác HKA cân tại H.

* **Bước 9:** Do đó, $\widehat{HAK} = \widehat{HKA}$.

* **Bước 10:** Mặt khác, $\widehat{HKA} = \widehat{HCB}$ (cùng chắn cung HB).

* **Bước 11:** Từ bước 9 và bước 10 suy ra $\widehat{HAK} = \widehat{HCB}$.

* **Bước 12:** Xét tam giác HAK và tam giác HCB có:

    * $\widehat{HAK} = \widehat{HCB}$ (chứng minh trên)

    * $\widehat{AHK} = \widehat{CHB} = 90^\circ$

    * $\Rightarrow$ $\triangle HAK \sim \triangle HCB$ (g.g)

* **Bước 13:** Từ bước 12 suy ra $\frac{HK}{HC} = \frac{HA}{HB} = 1 \Rightarrow HK = HC$.

* **Bước 14:** Từ bước 7 và bước 13 suy ra HK = HA = HC.

* **Bước 15:** Xét tứ giác BHCK có:

    * HK = HA = HC (chứng minh trên)

    * $\Rightarrow$ Tứ giác BHCK là hình thoi.

 

**b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.**

 

* **Bước 1:** Vì M là trung điểm của BC nên HM là đường trung tuyến của tam giác HBC.

* **Bước 2:** Mặt khác, BHCK là hình thoi nên HM cũng là đường cao của tam giác HBC.

* **Bước 3:** Do đó, HM vuông góc với BC.

* **Bước 4:** Vì HK = HC nên HK là đường trung tuyến của tam giác HKC.

* **Bước 5:** Mặt khác, $\widehat{HKC} = 90^\circ$ nên HK cũng là đường cao của tam giác HKC.

* **Bước 6:** Do đó, HK vuông góc với KC.

* **Bước 7:** Từ bước 3 và bước 6 suy ra H, M, K thẳng hàng.

 

**c) Từ H kẻ HG vuông góc với BC (G thuộc BC). Lấy điểm I thuộc tia đối của tia GH sao cho GH = GI. Chứng minh tứ giác BCKI là hình thang cân.**

 

* **Bước 1:** Xét tứ giác BCKI có:

    * $\widehat{BKI} = \widehat{CKI} = 90^\circ$ (BK, CK vuông góc với AB, AC)

    * $\Rightarrow$ Tứ giác BCKI nội tiếp đường tròn đường kính BC.

* **Bước 2:** Vì BCKI nội tiếp đường tròn đường kính BC nên $\widehat{BIK} = \widehat{BCK}$ (cùng chắn cung BK).

* **Bước 3:** Mặt khác, $\widehat{BCK} = \widehat{HKB}$ (cùng chắn cung HB).

* **Bước 4:** Từ bước 2 và bước 3 suy ra $\widehat{BIK} = \widehat{HKB}$.

* **Bước 5:** Xét tam giác BIK và tam giác BHK có:

    * $\widehat{BIK} = \widehat{HKB}$ (chứng minh trên)

    * $\widehat{BKI} = \widehat{BKH} = 90^\circ$

    * $\Rightarrow$ $\triangle BIK \sim \triangle BHK$ (g.g)

* **Bước 6:** Từ bước 5 suy ra $\frac{BI}{BH} = \frac{BK}{BK} = 1 \Rightarrow BI = BH$.

* **Bước 7:** Mặt khác, GH = GI nên BH = BI = GH + HI = GI + HI = HI.

* **Bước 8:** Do đó, BH = HI.

* **Bước 9:** Xét tứ giác BCKI có:

    * BI = BH (chứng minh trên)

    * $\widehat{BKI} = \widehat{CKI} = 90^\circ$

    * $\Rightarrow$ Tứ giác BCKI là hình thang cân.

 

**Kết luận:**

 

* a) Tứ giác BHCK là hình thoi.

* b) H, M, K thẳng hàng.

* c) Tứ giác BCKI là hình thang cân.

 

Bài thơ "Bánh trôi nước" của Hồ Xuân Hương là một bài thơ thất ngôn tứ tuyệt, thể hiện tâm tư, nỗi lòng của người phụ nữ trong xã hội phong kiến xưa. 

 

**Nội dung chính của bài thơ:**

 

* **Miêu tả hình ảnh bánh trôi nước:** Bánh trôi nước được miêu tả với hình dáng tròn trịa, trắng nõn, nổi lên, chìm xuống trong nước. Hình ảnh này ẩn dụ cho thân phận người phụ nữ trong xã hội phong kiến.

* **Nói lên thân phận bấp bênh, phụ thuộc của người phụ nữ:** "Sống thác, bồng bềnh, chìm nổi" là hình ảnh ẩn dụ cho cuộc đời lênh đênh, không tự chủ của người phụ nữ. Họ phải phụ thuộc vào hoàn cảnh, vào người khác.

* **Khẳng định phẩm chất tốt đẹp của người phụ nữ:** "Rắn nát mặc dầu tay kẻ nặn" thể hiện ý chí, tinh thần kiên cường, không khuất phục của người phụ nữ. Dù bị xã hội vùi dập, bóp nghẹt, họ vẫn giữ được phẩm chất tốt đẹp của mình.

* **Mong muốn được tự do, được sống một cuộc đời trọn vẹn:** "Bảy nổi ba chìm với nước non" là lời than thở về số phận bất hạnh của người phụ nữ. Họ khao khát được thoát khỏi cuộc sống bấp bênh, được sống một cuộc đời tự do, hạnh phúc.

 

**Thông điệp của bài thơ:**

 

Bài thơ "Bánh trôi nước" là lời lên án xã hội phong kiến bất công, bóp nghẹt quyền sống của người phụ nữ. Đồng thời, bài thơ cũng khẳng định phẩm chất tốt đẹp, ý chí kiên cường của người phụ nữ Việt Nam. 

 

**Nghệ thuật:**

 

* Sử dụng biện pháp ẩn dụ, so sánh, nhân hóa, điệp ngữ...

* Ngôn ngữ giản dị, trong sáng, gần gũi với đời sống.

* Cách gieo vần, nhịp thơ tạo nên sự nhịp nhàng, du dương.

 

Bài thơ "Bánh trôi nước" là một tác phẩm kinh điển của văn học Việt Nam, đã trở thành biểu tượng cho thân phận người phụ nữ trong xã hội phong kiến. 

Chúc em 1 ngày học tốt.