

NGUYỄN THÙY TRÂM
Giới thiệu về bản thân



































a) \(\Delta A I E \sim \Delta A C I\) (g.g) suy ra \(\frac{A I}{A C} = \frac{A E}{A I}\) hay \(A I^{2} = A E . A C\) (1)
Chứng minh tương tự:
\(\Delta A I K \sim \Delta A K B\) (g.g) suy ra \(\frac{A K}{A B} = \frac{A F}{A K}\) hay \(A K^{2} = A B . A F\) (2)
Mà \(\Delta A B E \sim \Delta A C F\) (g.g) suy ra \(\frac{A B}{A C} = \frac{A E}{A F}\) hay \(A B . A F = A C . A E\) (3)
Từ (1), (2) và (3) ta có \(A I^{2} = A K^{2}\) suy ra \(A I = A K\).
b) Vì \(\hat{A} = 60^{\circ}\) suy ra \(\hat{B_{1}} = 30^{\circ}\)
Trong tam giác \(A B E\) vuông tại \(E\) nên \(A E = \frac{1}{2} A B ,\)
Trong tam giác \(A F C\) vuông tại \(F\) có \(\hat{C_{1}} = 30^{\circ}\) suy ra \(A F = \frac{1}{2} A C\).
Do đó, \(\Delta A E F \sim \Delta A B C\) (c.g.c).
suy ra \(\frac{S_{A E F}}{S_{A B C}} = \left(\left(\right. \frac{A E}{A B} \left.\right)\right)^{2} = \frac{1}{4}\).
Vậy \(S_{A E F} = \frac{1}{4} . 120 = 30\) cm\(^{2}\).
Gọi \(B F\) cắt \(D C\) tại \(K\), \(B E\) cắt \(D C\) tại \(I\), và \(E F\) cắt \(A B\) tại \(G\).
\(\Delta F A B\) có \(D K\) // \(A B\) suy ra \(\frac{D K}{A B} = \frac{F D}{F A}\) (1)
\(\Delta F A G\) có \(D H\) // \(A G\) suy ra \(\frac{D H}{A G} = \frac{F D}{F A}\) (2)
Từ (1) và (2) suy ra \(\frac{D K}{A B} = \frac{D H}{A G}\) hay \(\frac{D K}{D H} = \frac{A B}{A G}\) (*)
Tương tự \(\Delta E I C\) có \(A B\) // \(I C\) suy ra \(\frac{I C}{A B} = \frac{E C}{E A}\) (3)
\(\Delta E H C\) có \(H C\) // \(A B\) suy ra \(\frac{H C}{A G} = \frac{E C}{E A}\) (4)
Từ (3) và (4) ta có \(\frac{I C}{A B} = \frac{H C}{A G}\) hay \(\frac{I C}{H C} = \frac{A B}{A G}\) (**)
Từ (*) và (**) ta có \(\frac{D K}{D H} = \frac{I C}{H C}\).
Mà \(D H = H C\) (gt) suy ra \(D K = I C\)
Mặt khác \(B D = B C\) (gt) nên \(\Delta B D C\) cân
Suy ra \(\hat{B D K} = \hat{B C I}\)
Vậy \(\Delta B D K = \Delta B C I\) (c.g.c)
Suy ra \(\hat{D B K} = \hat{C B I}\).
a) \(\Delta A B E\) có \(A M\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{E B}{E D}\) (1)
\(\Delta A D E\) có \(A D\) // \(B K\) suy ra \(\frac{E B}{E D} = \frac{E K}{E A}\) (2)
Từ (1) và (2) ta có \(\frac{A E}{E G} = \frac{E K}{E A}\) nên \(A E^{2} = E K . E G\).
b) Từ \(\frac{1}{A E} = \frac{1}{A K} + \frac{1}{A G}\) suy ra \(\frac{A E}{A K} + \frac{A E}{A G} = 1\)
\(\Delta A D E\) có \(A D\) // \(B C\) suy ra \(\frac{A E}{E K} = \frac{E D}{E B}\)
\(\frac{A E}{A E + E K} = \frac{E D}{E D + E B}\)
\(\frac{A E}{A K} = \frac{E D}{D B}\) (3)
Tương tự \(\Delta A E B\) có \(A B\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{B E}{E D}\)
\(\frac{A E}{A E + E G} = \frac{B E}{B E + E D}\)
\(\frac{A E}{A G} = \frac{B E}{B D}\) (4)
Khi đó \(\frac{A E}{A K} + \frac{A E}{A G} = \frac{E D}{B D} + \frac{B E}{B D} = 1\).
c) Ta có \(\frac{B K}{K C} = \frac{A B}{C G}\) suy ra \(B K = \frac{K C . A B}{C G}\) và \(\frac{K C}{A D} = \frac{C G}{D G}\).
Suy ra \(D G = \frac{A D . C G}{K C}\)
Nhân theo vế ta được \(B K . D G = A B . A D\) không đổi.
Qua \(A\) vẽ đường thẳng song song với \(B C\) cắt \(B B^{'}\) tại \(D\) và cắt \(C C^{'}\) tại \(E\).
Khi đó
\(\Delta A M E\) có \(A E\) // \(A^{'} C\) suy ra \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C}\) (1)
\(\Delta A M D\) có \(A D\) // \(A^{'} B\) suy ra \(\frac{A M}{A^{'} M} = \frac{A D}{A^{'} B}\) (2)
Từ (1) và (2) ta có \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C} = \frac{A D}{A^{'} B} = \frac{A D + A E}{A^{'} C + A^{'} B} = \frac{D E}{B C}\) (*)
Chứng minh tương tự ta cũng có:
\(\Delta A B^{'} D\) có \(A D\) // \(B C\) suy ra \(\frac{A B^{'}}{B^{'} C} = \frac{A D}{B C}\) (3)
\(\Delta A C^{'} E\) có \(A E\) // \(B C\) suy ra \(\frac{A C^{'}}{C^{'} B} = \frac{A E}{B C}\) (4)
Từ (3) và (4) ta có \(\frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}} = \frac{A D}{B C} + \frac{A E}{B C} = \frac{D E}{B C}\) (**)
Từ (*) và (**) ta có \(\frac{A M}{A^{'} M} = \frac{D E}{B C} = \frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}}\) (đpcm).
=3-1/1.3+5-3/3.5+7-5/5.7+...+ 101-99/99.101
=3/1.3-1/1.3+5/3.5-3/3.5+7/5.7-5/5.7...+ 101/99.101-99/99.101
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
1) a)tập hợp các điểm thuộc đoạn thẳng BD là B;C;D, tập hợp các điểm không thuộc đoạn thẳng BD là A;E
b)cặp đường thẳng song song là AB//DE
c)Các cặp đường thẳng cắt nhau là:
AB và AE cắt nhau tại A
BA và BD cắt nhau tại B
AE và BD cắt nhau tại C
DE và DB cắt nhau tại D
EA và ED cắt nhau tại E
2) độ dài của đoạn thẳng AB là: 6-4=2(cm)
độ dài đoạn thẳng AM là: 2:2=1(cm)
độ dài đoạn thẳng OM là: 4+1=5(cm)
a) so sánh ba phân số ta được:
5/27<2/9<1/3
vậy trong một giờ đội thứ ba làm được ít nhất, đội thứ hai làm được nhiều nhất
b)Nếu làm chung cả ba đội làm được:
5/27+2/9+1/3=20/27(công việc)
a) x=-5/12+2/3
x=-5/12+8/12
x=3/12
x=1/4
b)x=8/5:(-2/3)
x=8/5.(-3/2)
x=-12/5
c)3/7.x=1-(-2/7)
3/7.x=9/7
x=9/7:3/7
x=3
a) =-2/7+(2/7:3/5)
=-2/7+10/21
=-6/21+10/21 =4/21
b)=(-8/19+27/19) + (-4/21-17/21)
=19/19+(-21/21)
=1+(-1) = 0
c)= 6/5(3/13-6/13)
=6/5(3-6/13)
=6/5(-1) = -6/5
x^2+xy+2023x+2022y+2023=0
x^2+xy+x+2022x+2022y+2022+1=0
x(x+y+1)+2022(x+y+1)=−1
(x+2022)(x+y+1)=−1
x+2022=1 hoặc x+y+1=−1
x+2022=-1 hoặc x+y+1=1
x=−2021 và y=2019 hoặc x=−2023 và y=2023
Vậy (x;y)∈{(−2021;2019);(−2023;2023)}