PHẠM MINH PHƯƠNG

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của PHẠM MINH PHƯƠNG
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) ΔABC vuông tại A suy ra BAC^=90∘ suy ra DAE^=90∘.

Do HD⊥AB suy ra HDA^=90∘HE⊥AC suy ra HEA^=90∘.

Tứ giác ADHE có DAE^=HDA^=HEA^=90∘ suy ra tứ giác ADHE là hình chữ nhật. 

b) Do ΔAHD vuông tại D, áp dụng định lí Pythagore suy ra:

AH2=AD2+DH2

25=16+DH2

DH2=9 nên DH=3 cm.

Do ADHE là hình chữ nhật suy ra SADHE=AD.DH=4.3=12 (cm2).

Vì đồ thị hàm số y=ax+b đi qua điểm A(−1;2) nên ta có:

   2=−1.a+b suy ra −a+b=2

Vi đồ thị hàm số y=ax+b đi qua điểm B(1;4) nên ta có:

   4=1.a+b suy ra a+b=4(2)

Từ (1) và (2) ta tìm được a=1;b=3

Vậy hàm số cần tìm là y=x+3.

a) thay x=2 vào biểu thức Q ta được

Q=\(\dfrac{-3}{5}\)

b) P=\(\dfrac{x+3}{x+1}\)

c) với x=1 thì M=\(\dfrac{-1}{2}\)

a)5(x+2y)−15x(x+2y)=5(x+2y).(1−3x)

b) 4x2−12x+9=[(2x)2−2.2x.3+32]=(2x−3)2

c) (3x−2)3−3(x−4)(x+4)+(x−3)3−(x+1)(x2−x+1)

=27x3−54x2+36x−8−3(x2−16)+x3−9x2+27x−27−(x3+1)

=(27x3+x3−x3)+(−54x2−3x2−9x2)+(36x+27x)+(−8+48−27−1)

=27x3−66x2+63x+12

x2+xy+2023x+2022y+2023=0

x2+xy+x+2022x+2022y+2022+1=0

x(x+y+1)+2022(x+y+1)=−1

(x+2022)(x+y+1)=−1

x+2022=1 hoặc x+y+1=1

x+2022=−1 hoặc x+y+1=1

x=−2021 và y=2019 hoặc x=−2023 và y=2023

Vậy (x;y){(−2021;2019);(−2023;2023)}

 

a) Xét tứ giác AEDF có:

DE // AF (do DE // AB);

DF // AE (do DF // AC).

Suy ra AEDF là hình bình hành (DHNB)

Mà đường chéo AD là tia phân giác của FAE^ (gt)

Nên AEDF là hình thoi (DHNB).

b) Vì AEDF là hình thoi (cmt) nên DE // AFDE=AF (tính chất)

Mà AF=GF (gt) ; G thuộc tia đối của tia FA (gt) nên DE=GFDE // DF 

Xét tứ giác EFGD có: DE=GF (cmt); DE // GF (cmt)

Vậy EFGD là hình bình hành.

c) Theo bài ra, G thuộc tia đối của tia FA và FA=FG suy ra F là trung điểm của AG

Ta có: AG=2AFID=2DF

Mà AF=DF (do AEDF là hình thoi) suy ra AG=ID

Xét tứ giác ADGI có:

Hai đường chéo AG và ID cắt nhau tại trung điểm F của mỗi đường;

Suy ra ADGI là hình bình hành (DHNB)

Lại có AG=ID (cmt) suy ra ADGI là hình chữ nhật (DHNB)

GD // IA suy ra GD // AK (A,I,K thẳng hàng)

Xét tứ giác AKDG có: GD // AK (cmt) ; DK // AG( do DE // AF) 

Suy ra AKDG là hình bình hành (DHNB) 

Khi đó hai đường chéo AD và GK cắt nhau tại trung điểm của mỗi đường 

Mà O là trung điểm của AD (do O là giao điểm của hai đường chéo trong hình thoi AEDF) 

Vậy O là trung điểm của GK.

1. Đổi: 100 cm =10 dm.

Thể tích của hình chóp tứ giác đều đó là:

   V=13.Sđ .h=13.30.10=100 (dm3\(^3\))

 

 

a) x2−3x=0

x2−3x=0

suy ra x(x−3)=0

TH1: x=0

TH2: x−3=0 hay x=3.

b) x2−6x+8=0

x2−6x+8=0

(x2−4x)−(2x−8)=0

(x−4)(x−2)=0

TH1: x−4=0 suy ra x=4

TH2: x−2=0 suy ra x=2

Vậy x=4 hoặc x=2.

a) (6x3y2−27x3y):3xy

=2x2y−9x

 

Bố Nam có nhóm máu AB nên không hề có kháng thể trong huyết tương để chống lại bất kỳ kháng nguyên do đó theo nguyên tắc truyền máu cả ba người còn lại trong gia đình đều có thể truyền máu cho bố Nam. ời nhận), cả ba người còn lại trong gia đình đều có thể truyền máu cho bố An.hóm máu AB, tức là không hề có kháng thể trong huyết tương để chống lại bất kỳ kháng nguyên nào nên theo nguyên tắc truyền máu (kháng nguyên trên hồng cầu người cho không có kháng thể tương ứng trong huyết tương người nhận), cả ba người còn lại trong gia đình đều có thể truyền máu cho bố An.