

NGÔ THỦY ANH
Giới thiệu về bản thân



































a: Xét tứ giác ABOC có \(\hat{O B A} + \hat{O C A} = 9 0^{0} + 9 0^{0} = 18 0^{0}\)
nên ABOC là tứ giác nội tiếp đường tròn đường kính AO
Tâm I là trung điểm của AO
b: Xét ΔABO có I,M lần lượt là trung điểm của AO,AB
=>MI là đường trung bình của ΔABO
=>MI//BO
Xét ΔAMI và ΔABO có \(\frac{A M}{A B} = \frac{A I}{A O} \left(\right. = \frac{1}{2} \left.\right)\) và góc MAI chung
nên ΔAMI~ΔABO
=>\(\frac{A M}{A B} = \frac{A I}{A O}\)
=>\(A M \cdot A O = A B \cdot A I\)
c: Gọi H là trung điểm của AM
Xét ΔCMA có
G là trọng tâm
H là trung điểm của AM
Do đó: C,G,H thẳng hàng và \(C G = \frac{2}{3} C H\)
Ta có: CG+GH=CH
=>\(G H = H C - \frac{2}{3} H C = \frac{1}{3} H C\)
Ta có: H là trung điểm của AM
=>\(H A = H M = \frac{A M}{2} = \frac{B M}{2}\)
Ta có: HM+MB=HB
=>\(H B = \frac{1}{2} M B + M B = \frac{3}{2} M B\)
=>\(\frac{H M}{H B} = \frac{\frac{1}{2} M A}{\frac{3}{2} M A} = \frac{1}{3}\)
Xét ΔHCB có \(\frac{H M}{H B} = \frac{H G}{H C} \left(\right. = \frac{1}{3} \left.\right)\)
nên MG//BC
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét tứ giác BCED có \(\hat{B C E} + \hat{B D E} = 9 0^{0} + 9 0^{0} = 18 0^{0}\)
nên BCED là tứ giác nội tiếp
b: Xét ΔADE vuông tại D và ΔACB vuông tại C có
\(\hat{D A E}\) chung
Do đó: ΔADE~ΔACB
=>\(\frac{A D}{A C} = \frac{A E}{A B}\)
=>\(A E \cdot A C = A D \cdot A B = \frac{1}{4} A B \cdot A B = \frac{1}{4} A B^{2}\)
a: Ta có: \(\hat{C H M} + \hat{H C M} = 9 0^{0}\)(ΔHMC vuông tại M)
\(\hat{N B C} + \hat{N C B} = 9 0^{0}\)(ΔNBC vuông tại N)
Do đó: \(\hat{C H M} = \hat{N B C} = \hat{A B C}\)
b: Xét tứ giác BNHM có \(\hat{B N H} + \hat{B M H} = 9 0^{0} + 9 0^{0} = 18 0^{0}\)
nên BNHM là tứ giác nội tiếp
=>\(\hat{N B M} + \hat{N H M} = 18 0^{0}\)
=>\(\hat{A B C} + \hat{N H M} = 18 0^{0}\)
mà \(\hat{A B C} + \hat{A D C} = 18 0^{0}\)(ABCD là tứ giác nội tiếp)
nên \(\hat{N H M} = \hat{A D C}\)
mà \(\hat{N H M} = \hat{A H C}\)(hai góc đối đỉnh)
nên \(\hat{A H C} = \hat{A D C}\)
c: Xét tứ giác ANMC có \(\hat{A N C} = \hat{A M C} = 9 0^{0}\)
nên ANMC là tứ giác nội tiếp
=>\(\hat{M A C} = \hat{M N C}\)
a: Ta có: \(\hat{C H M} + \hat{H C M} = 9 0^{0}\)(ΔHMC vuông tại M)
\(\hat{N B C} + \hat{N C B} = 9 0^{0}\)(ΔNBC vuông tại N)
Do đó: \(\hat{C H M} = \hat{N B C} = \hat{A B C}\)
b: Xét tứ giác BNHM có \(\hat{B N H} + \hat{B M H} = 9 0^{0} + 9 0^{0} = 18 0^{0}\)
nên BNHM là tứ giác nội tiếp
=>\(\hat{N B M} + \hat{N H M} = 18 0^{0}\)
=>\(\hat{A B C} + \hat{N H M} = 18 0^{0}\)
mà \(\hat{A B C} + \hat{A D C} = 18 0^{0}\)(ABCD là tứ giác nội tiếp)
nên \(\hat{N H M} = \hat{A D C}\)
mà \(\hat{N H M} = \hat{A H C}\)(hai góc đối đỉnh)
nên \(\hat{A H C} = \hat{A D C}\)
c: Xét tứ giác ANMC có \(\hat{A N C} = \hat{A M C} = 9 0^{0}\)
nên ANMC là tứ giác nội tiếp
=>\(\hat{M A C} = \hat{M N C}\)
a: Ta có: \(\hat{C H M} + \hat{H C M} = 9 0^{0}\)(ΔHMC vuông tại M)
\(\hat{N B C} + \hat{N C B} = 9 0^{0}\)(ΔNBC vuông tại N)
Do đó: \(\hat{C H M} = \hat{N B C} = \hat{A B C}\)
b: Xét tứ giác BNHM có \(\hat{B N H} + \hat{B M H} = 9 0^{0} + 9 0^{0} = 18 0^{0}\)
nên BNHM là tứ giác nội tiếp
=>\(\hat{N B M} + \hat{N H M} = 18 0^{0}\)
=>\(\hat{A B C} + \hat{N H M} = 18 0^{0}\)
mà \(\hat{A B C} + \hat{A D C} = 18 0^{0}\)(ABCD là tứ giác nội tiếp)
nên \(\hat{N H M} = \hat{A D C}\)
mà \(\hat{N H M} = \hat{A H C}\)(hai góc đối đỉnh)
nên \(\hat{A H C} = \hat{A D C}\)
c: Xét tứ giác ANMC có \(\hat{A N C} = \hat{A M C} = 9 0^{0}\)
nên ANMC là tứ giác nội tiếp
=>\(\hat{M A C} = \hat{M N C}\)