

Phạm Trần Thu Trang
Giới thiệu về bản thân



































Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)
Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).
YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log2t1+log2t2=5log2t1+log2t2=5
\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)
\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)
\(\Leftrightarrow m = 32\).
Ta có \(4^{x} - 3. 2^{x + 2} + m = 0 \Leftrightarrow 4^{x} - 12. 2^{x} + m = 0\) (1)
Đặt \(t = 2^{x} , \left(\right. t > 0 \left.\right)\) phương trình (1) trở thành \(t^{2} - 12 t + m = 0\) \(\left(\right. 2 \left.\right)\).
YCBT \(\Leftrightarrow \left(\right. 2 \left.\right)\) có hai nghiệm dương phân biệt \(t = t_{1} ; t = t_{2}\) và log2t1+log2t2=5log2t1+log2t2=5
\(\Leftrightarrow \left{\right. & \Delta^{'} > 0 \\ & S > 0 \\ & P > 0 \\ & t_{1} . t_{2} = 32\)
\(\Leftrightarrow \left{\right. & 36 - m > 0 \\ & m > 0 \\ & m = 32\)
\(\Leftrightarrow m = 32\).
ΔSAB vuông tại \(A \Rightarrow S A ⊥ A B\)
\(\Delta S A D\) vuông tại \(A \Rightarrow S A ⊥ A D\).\(\)
Suy ra \(S A ⊥ \left(\right. A B C D \left.\right)\).
Gọi \(I\) là giao điểm của \(B M\) và \(A D\).
Gọi \(I\) là giao điểm của \(B M\) và \(A D\).
Dựng \(A H\) vuông góc với \(B M\) tại \(H\).
Dựng \(A K\) vuông góc với \(S H\) tại \(K\).
SA⊥(ABCD)BM⊂(ABCD)}⇒SA⊥BM mà \(B M ⊥ A H\)
\(\Rightarrow B M ⊥ \left(\right. S A H \left.\right)\).
Ta có (SAH)⊥(SBM)
(SAH)∩(SBM)=SH
⇒AK⊥(SBM)
⇒d(A,(SBM))=AK
Xét \(\Delta I A B\) có \(M D\) // \(A B \Rightarrow \frac{I D}{I A} = \frac{M D}{A B} = \frac{\frac{1}{2} C D}{A B} = \frac{1}{2}\)
\(\Rightarrow D\) là trung điểm của \(I A\) \(\Rightarrow I A = 2 A D = 2 a\).
\(\Delta A B I\) vuông tại \(A\) có \(A H\) là đường cao \(\Rightarrow \frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A I^{2}} = \frac{1}{a^{2}} + \frac{1}{4 a^{2}} = \frac{5}{4 a^{2}}\).
SA⊥(ABCD)AH⊂(ABCD)}⇒SA⊥AH.
\(\Delta S A H\) vuông tại \(A\) có \(A K\) là đường cao \(\Rightarrow \frac{1}{A K^{2}} = \frac{1}{S A^{2}} + \frac{1}{A H^{2}} = \frac{1}{4 a^{2}} + \frac{5}{4 a^{2}} = \frac{6}{4 a^{2}}\)
\(\Rightarrow A K^{2} = \frac{4 a^{2}}{6}\)\(\Rightarrow A K = \frac{2 a}{\sqrt{6}} \Rightarrow d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{2 a}{\sqrt{6}}\).
\(\frac{d \left(\right. D , \left(\right. S B M \left.\right) \left.\right)}{d \left(\right. A , \left(\right. S B M \left.\right) \left.\right)} = \frac{D I}{A I} = \frac{1}{2}\)
\(\Rightarrow d \left(\right. D , \left(\right. S B M \left.\right) \left.\right) = \frac{1}{2} d \left(\right. A , \left(\right. S B M \left.\right) \left.\right) = \frac{a}{\sqrt{6}}\).