

Đỗ Long Nhật
Giới thiệu về bản thân



































\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)
\(\frac23+\frac14+\frac35\) \(-\frac{7}{45}+\frac59\) \(+\frac{1}{12}+\frac{1}{35}\) \(\left(\frac23+\frac14+\frac{1}{12}\right)\) \(+\left(\frac59+\frac{7}{45}\right)\) \(+\frac35+\frac{1}{35}\) \(=1+\frac45+\frac35\) \(+\frac{1}{35}=\) \(\frac{71}{35}\) .b\(\left(5-6-2\right)\) \(+\left(-\frac34\right.\) \(-\frac74+\frac54\) \()+\left(\right.\) \(\frac15+\frac85\) \(-\frac{16}{5})\) \(-\left(3\right.\) \(+\frac54+\frac75)\) \(=-\frac{113}{20}\)