

Lê Việt Thành
Giới thiệu về bản thân



































Xét tam giác có và nên suy ra // .
Theo hệ quả định lí Thalès, ta có:
Suy ra
.
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (1)
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (2)
Lại có: // (gt); // (gt)
Suy ra //
Trong tam giác , ta có: // (chứng minh trên)
Suy ra (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra MN = PQ$ (đpcm)
Khi đó, là đường trung tuyến của tam giác .
Vì là trọng tâm của tam giác nên điểm nằm trên cạnh .
Ta có hay .
Vì // , theo định lí Thalès, ta suy ra: .
Ta có (vì là trung điểm của cạnh ) nên .
Do đó (đpcm).
là hình thang suy ra // .
Áp dụng hệ quả định lí Thalès, ta có:
Suy ra (đpcm).
// nên ;
// nên .
Khi đó, .
a) ABCD là hình bình hành nên AD = BC và AD // BC.
Mà E là trung điểm của AD nên AE = ED;
F là trung điểm của BC nên BF = FC.
Suy ra DE = BF.
Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).
b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD.
Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của BD nên O là trung điểm của EF.
Vậy ba điểm E, O, F thẳng hàng.
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vậy các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vậy các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau