NGOCMINH

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của NGOCMINH
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a: ΔABC vuông cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông

b: AEDF là hình vuông

=>góc AEF=45 độ

=>góc AEF=góc ABC

=>EF//BC

Xét tứ giác ADME có

\(\hat{A D M} = \hat{A E M} = \hat{D A E} = 9 0^{0}\)

=>ADME là hình chữ nhật

b; XétΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=BM=CM

Xét tứ giác AMBI có

D là trung điểm chung của AB và MI

Do đó: AMBI là hình bình hành

mà MA=MB

nên AMBI là hình thoi

c: Để AMBI là hình vuông thì \(\hat{A M B} = 9 0^{0}\)

=>AM\(\bot\)BC

Xét ΔABC có

AM là đường cao, là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC

a: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC và AB//CD

Ta có: AD//BC

AP\(\bot\)BC

Do đó: AP\(\bot\)AD

Ta có: AP\(\bot\)AD

CQ\(\bot\)AD

Do đó: AP//CQ

Ta có: AD//BC

Q\(\in\)AD

P\(\in\)BC

Do đó: AQ//CP

Xét tứ giác APCQ có

AQ//CP

AP//CQ

=>APCQ là hình bình hành

=>AC cắt PQ tại trung điểm của mỗi đường

mà N là trung điểm của AC

nên N là trung điểm của PQ

b: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi

ABCD trở thành hình chữ nhật khi \(\hat{A B C} = 9 0^{0}\)

ABCD trở thành hình thoi khi BA=BC

Vậy: Để ABCD trở thành hình vuông thì BA=BC và \(\hat{A B C} = 9 0^{0}\)

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

a) Ta có thể chứng minh ΔAOP = ΔBOR bằng cách sử dụng góc vuông và góc đồng quy. Vì hai đường thẳng m và n vuông góc với nhau tại O, nên góc AOP và góc BOR là góc vuông. Đồng thời, ta cũng có góc OPA = góc ORB (do OP và OR là hai cạnh của hình vuông OPRQ). Vì vậy, theo góc đồng quy, ta có ΔAOP = ΔBOR.

b) Vì O là giao điểm của hai đường chéo của hình vuông ABCD, nên ta có OP = OR = OS = OQ.

c) Ta cũng có thể chứng minh PRSQ là hình vuông bằng cách sử dụng góc vuông và góc đồng quy. Vì hai đường thẳng m và n vuông góc với nhau tại O, nên góc PQR và góc PSR là góc vuông. Đồng thời, ta cũng có góc QPR = góc RPS (do PQ và RS là hai cạnh của hình vuông PRSQ). Vì vậy, theo góc đồng quy, ta có PRSQ là hình vuông.

Vậy, ΔAOP = ΔBOR, OP = OR = OS = OQ và PRSQ là hình vuông.